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The microbiota–gut–brain axis in gastrointestinal
disorders: stressed bugs, stressed brain or both?

Giada De Palma, Stephen M. Collins, Premysl Bercik and Elena F. Verdu

Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada

Abstract The gut–brain axis is the bidirectional communication between the gut and the brain,
which occurs through multiple pathways that include hormonal, neural and immune mediators.
The signals along this axis can originate in the gut, the brain or both, with the objective of
maintaining normal gut function and appropriate behaviour. In recent years, the study of gut
microbiota has become one of the most important areas in biomedical research. Attention has
focused on the role of gut microbiota in determining normal gut physiology and immunity and,
more recently, on its role as modulator of host behaviour (‘microbiota–gut–brain axis’). We
therefore review the literature on the role of gut microbiota in gut homeostasis and link it with
mechanisms that could influence behaviour. We discuss the association of dysbiosis with disease,
with particular focus on functional bowel disorders and their relationship to psychological stress.
This is of particular interest because exposure to stressors has long been known to increase
susceptibility to and severity of gastrointestinal diseases.
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Introduction

The central nervous system and the gastrointestinal (GI)
tract are in constant bidirectional communication through
neural pathways, such as the vagus nerve, and by humoral
and cellular mediators that include the immune system
and the hypothalamic–pituitary–adrenal (HPA) axis.

The gut is colonized with a complex community
of bacteria (microbiota), which helps to shape the
immune system, metabolic function and behaviour in
health and disease throughout life. The microbiota is
a relatively new player in the gut–brain axis, fulfilling
key roles in its communication (Bailey & Coe, 1999;
Bercik et al. 2011a; Heijtz et al. 2011; Neufeld et al.
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2011; Matsumoto et al. 2013), which has led to the term
‘microbiota–gut–brain axis’ (Rhee et al. 2009; Collins
et al. 2012). Alterations in gut microbiota (dysbiosis)
can arise as a consequence of gastrointestinal disease
or of its treatment. All major chronic disorders of the
gut, namely inflammatory bowel disease, irritable bowel
syndrome and coeliac disease, are associated with dysbiosis
(Nadal et al. 2007; Collado et al. 2009; De Palma et al.
2010). Although an overall decrease in diversity and
richness of the microbiota seems to be a common finding
across studies, no specific dysbiotic signature has emerged
between studies. This may be due, in part, to differences
in sampling (small intestinal, colonic, faecal), as well
as analytical techniques employed (culture, Denaturing
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Gradient Gel Electrophoresis, DGGE, Illumina, 454
sequencing, Matrix-assisted laser desorption ionization
time-of-flight mass spectrometer, MALDI-TOF) (Lagier
et al. 2012). However, there is now increasing evidence that
dysbiosis modulates peripheral and central nervous system
function, leading to alterations in brain signalling and
behaviour (Bercik et al. 2011a; Collins et al. 2013; Mulle
et al. 2013). This observation is important in view of the
fact that stress and depression, common co-morbidities in
GI disorders, in turn influence the natural course of these
illnesses (Collins, 2001; Wu, 2012).

The microbiota–gut–brain axis has been the subject of
numerous reviews in recent years (Rhee et al. 2009; Mayer,
2011, 2014; Bercik et al. 2012; Collins et al. 2012, 2013).
The influence of psychosocial and environmental stressors
on the pathogenesis of gastrointestinal diseases has long
been recognized. Recently, the mechanisms through which
stress may affect various physiological functions of the
GI tract have been reviewed (Konturek et al. 2011). We
will discuss the recent progress on specific mechanisms of
interaction between gut microbiota and brain, with focus
on the effect of psychological stress.

Gut microbiota and its host: a mutualistic relationship

A unique combination of different populations of
organisms inhabits our gut, mainly bacteria but also
archaea, viruses and protozoa, roughly approximating
1014 cells, outnumbering the human cells in our bodies
by a factor of 10 (Sekirov et al. 2010). While bacterial
profiling and its understanding has become easier during
the last decade, the analysis of the mycobiome and the
virome is still in its infancy (Minot et al. 2011, 2013; Cui
et al. 2013).

The human intestinal tract is essentially sterile at birth,
when it is immediately colonized. The gut microbiota
evolves during early life until a unique, subject-specific
(fingerprint) adult-like community arises, which is
relatively stable throughout life (Rajilić-Stojanović et al.
2013). Out of the more than 50 phyla described
in the literature, only few are found in the human
GI tract, dominated by two phyla in particular
(Firmicutes, Bacteroidetes), together with members
of Actinobacteria, Verrucomicrobia, Proteobacteria,
Fusobacteria and Cyanobacteria phyla (Sommer &
Bäckhed, 2013). These autochthonous phyla colonize the
GI tract and are present in a majority of individuals.
The concept of ‘enterotypes’ has recently been proposed
and, according to this, humans can be subdivided into
Bacteroides, Prevotella or Ruminococcus types (Zoetendal
et al. 2008; Arumugam et al. 2011). However, this
categorization has recently become a matter of debate,
and the term ‘enterogradients’ has been proposed instead,
to describe bacterial communities with prevalence of

Bacteroides or Prevotella (Jeffery et al. 2012). Microbes
in the human gut undergo selective pressure from the
host as well as from microbial competitors, and once the
ecosystems reaches homeostasis, some species will occur
in high and many in low abundance (Bäckhed, 2011;
Nicholson et al. 2012).

Even though the gut microbiota differs greatly between
subjects in membership and community structure, it
still appears on the whole to be functionally equivalent
and necessary for the proper development of the host.
Mammals have co-evolved to exist with their gut
microbiota largely in a mutualistic relationship; these
organisms participate in the conversion of non-digestible
carbohydrates (dietary fibre) to short-chain fatty acids,
participate in bile acid metabolism, provide a barrier
against pathogenic bacteria, and modulate the innate and
adaptive immune systems (Nicholson et al. 2012). In turn,
the host provides a unique, nutrient-rich niche at constant
temperature (Sommer & Bäckhed, 2013).

Studies using germ-free animals have highlighted the
importance of the gut microbiota in the maintenance
of homeostasis. Germ-free animals have physiological
and metabolic abnormalities compared with conventional
animals, as well as an imbalanced immune system
(Slack et al. 2009; Hapfelmeier et al. 2010; Geuking
et al. 2011; Kunii et al. 2011; Hansen et al. 2012;
Macpherson et al. 2012; Olszak et al. 2012). In addition,
germ-free animals exhibit abnormal gastrointestinal
motility (Abrams & Bishop, 1967; Gustafsson et al.
1970; Wostmann, 1981), increased expression of genes
encoding transporters throughout the gut (Bäckhed, 2011)
and altered perception of inflammatory pain (Amaral
et al. 2008). Moreover, germ-free mice have an impaired
capacity to harvest energy from the diet (Wostmann, 1981)
and are protected against diet-induced obesity (Bäckhed
et al. 2007; Rabot et al. 2010).

It is therefore not surprising that alterations in the
composition of the normal gut microbiota (dysbiosis)
are associated with a variety of GI disorders, such as
inflammatory bowel diseases, irritable bowel syndrome
and coeliac disease (Nadal et al. 2007; Collado et al. 2009;
De Palma et al. 2010). Future work will have to determine
whether a microbial signature for dysbiosis is associated
with specific disease states. Nevertheless, sufficient data
support the concept that changes in the microbiota may
arise in adulthood as a consequence of disease, long-term
dietary habits, antibiotics and medications. These changes
may be short term or long term, depending on the duration
of the trigger that induced them and the particular
characteristics of the host. In contrast, factors that impact
on the normal colonization process during early life,
such as psychological stress, may exert long-term effects
on the composition of the microbiota that will impact
susceptibility to disease.
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Microbiota–gut–brain axis

It is well known that the gut and the brain are
in bidirectional communication. The concept of the
gut–brain axis originated from the field of GI endo-
crinology and the discovery of hormonal regulation
of digestion (Track, 1980). Since then, it has evolved
to include the maintenance of homeostasis of several
systems, including GI function, appetite and weight
control (Collins & Bercik, 2009). Thus, it is only logical to
consider and include the gut microbiota as an important
modulator of this system and, consequently, the term
‘microbiota–gut–brain axis’ has emerged (Fig. 1; Bercik
et al. 2009, 2011a).

The known beneficial effects of laxatives and oral
antibiotics in patients with hepatic encephalopathy is
perhaps one of the earliest pieces of evidence for a role
of gut bacteria in brain function (Victor & Quigley,
2014). Antibiotics have also anecdotally been reported to
induce acute psychosis that resolved after withdrawal of
the drug (Sternbach & State, 1997; Mehdi, 2010). More
recently, an abnormal composition of the microbiota
has been associated with autism (Bolte, 1998; Finegold
et al. 2010, 2012; Yap et al. 2010; Wang et al. 2011,
2012, 2013; Williams et al. 2011, 2012; De Angelis et al.
2013; Kang et al. 2013); treatment with antibiotics in
patients with late-onset autism seems to improve their
symptoms (Sandler et al. 2000; Finegold et al. 2012).
Bacteroides fragilis, a Gram-negative anaerobic bacterium
that inhabits the lower GI tract of most mammals (Ley

et al. 2008), has been shown to ameliorate anxiety-like
behavior, sensorimotor, communicative and repetitive
behavior, but not sociability and social preference in an
animal model of autism. The underlying mechanisms
may involve modulation of gut microbiota composition
and serum metabolomic profile (Hsiao et al. 2013). An
association between major depressive disorder and altered
gut metabolism has also been proposed (Ledochowski et al.
1998a,b, 2000, 2001; Ochoa-Repáraz et al. 2011).

It is difficult to interpret whether this is a chicken or
egg situation, whether brain and behavioural alterations
precede gut dysfunction and dysbiosis, or whether gut
dysfunction and dysbiosis precede brain and behavioural
changes. It has been reported that chronic depression
is associated with altered microbial profiles and colonic
motility in mice (Park et al. 2013). However, it has been also
reported that chronic gastrointestinal inflammation can
induce anxiety-like behaviour and alter central nervous
system biochemistry (Bercik et al. 2010, 2011a). Therefore,
it is likely that both situations coexist in a self-perpetuating
loop, and that the initial trigger can arise centrally or in
the periphery. Additional research is needed to solve this
intriguing concept, and an interaction between clinical
and basic research using gnotobiotic technology will
probably help to provide mechanistic insight.

Stress and the microbiota–gut–brain axis

Stress is defined as an organism’s total response to
environmental demands or pressures. Several different

• Dysbiosis

• Gut dysfunction

• Low-grade or overt inflammation

• Tissue damage

• Dysfunctional  
HPA axis 

• Altered behaviour
• Increased pain 
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• Normal gut function

• Balanced immune system

• Normal gut morphology 

• Functional HPA 
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• Normal behaviour
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Figure 1. The microbiota–gut–brain axis
comprises the bidirectional communication,
through multiple pathways, between the
gut and the brain
During stress, alterations at the level of the
central nervous system can influence gut
neuromotor and secretory function, immunity
and microbiota composition. In turn, dysbiosis
may contribute to perpetuate dysfunction and
inflammation, further disrupting gut–brain
communication. Some of these effects may be
mediated by direct host–microbial interactions at
the level of the intestinal epithelium, production
of bacterial metabolites (cathecolamines, GABA,
etc). The sequence of events can occur in a
top-to-bottom or bottom-to-top fashion, but
once initiated can perpetuate and exacerbate
maladaptive responses that promote a state of
disease. We acknowledge dreamdesign and
cooldesign (FreeDigitalPhotos.net) for the image
of the gut and brain, respectively.
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types of stressors can be distinguished, such as acute or
chronic, some of which may occur only once, while others
are repetitive and can be anticipated. However, stress can
be unpredictable and uncontrollable, mild or severe, and
occur in or out of context (Lucassen et al. 2014). Moreover,
the perception of stress is variable between individuals,
and so is the persistence of its consequences (Lucassen
et al. 2014). Exposure to stressors has long been known to
increase susceptibility to disease, including GI disorders.
Stress contributes to many disabilities worldwide and, as
such, represents a severe economic burden.

Chronic and acute stress models are widely employed
in GI research, because stress has been identified as a
risk factor or modulator of the expression of several
GI disorders (Collins, 2001; Söderholm & Perdue, 2001;
Konturek et al. 2011). Tannock and Savage demonstrated,
40 years ago, that environmental and dietary stress
markedly altered the gut microbiota in mice, affecting
factors that regulate the localization and population
levels of micro-organisms along the GI tract (Tannock
& Savage, 1974), possibly favouring the establishment of
pathogenic bacterial species (Tannock & Smith, 1972;
Tannock & Savage, 1974). More recently, Bailey et al.
(2011) demonstrated that exposure to a social disruption
stressor affects the gut microbiota and circulating levels
of cytokines, particularly interleukin-6 and monocyte
chemotactic protein-1. In fact, social stress has been
reported to increase the risk of inflammation-related
diseases, promoting pro-inflammatory gene expression
and monocyte differentiation (Powell et al. 2013). Thus,
stressor-induced changes in the microbiota may enhance
the ability of enteric pathogens (such as Citrobacter
rodentium) to colonize the intestine (Bailey et al.
2010). Accordingly, it has been reported that acute and
repeated stress affect levels of intestinal secretory IgA,
impacting intestinal homeostasis and probably resulting
in inflammation (Campos-Rodrı́guez et al. 2013). Altered
levels of intestinal secretory IgA might cause shifts in
commensals and possibly result in dysbiosis.

Psychological and physical stressors activate the HPA
axis, resulting in the release of corticotrophin-releasing
hormone, the principal regulator of the HPA axis,
which is synthesized and secreted by hypophysiotrophic
neurons localized in the medial parvocellular subdivision
of the paraventricular nucleus (Smith & Vale, 2006).
Corticotrophin-releasing hormone induces the release
of adrenocorticotrophic hormone into the systemic
circulation, which will, in turn, stimulate glucocorticoid
synthesis in the adrenal cortex. Glucocorticoids, such
as corticosterone or cortisol in humans, are the down-
stream effectors of the HPA axis, and their biological
effects are usually adaptive (Smith & Vale, 2006). Together
with glucocorticoids, catecholamines (noradrenaline and
adrenaline) are also released into the circulatory system
after psychological and physical stressors (Lyte et al. 2011),

and it is well known that glucocorticoids can potentiate
some of the actions of catecholamines (Sapolsky et al.
2000).

The gastrointestinal tract has long been known to
be sensitive to stress and stress mediators, including
catecholamines, but the notion that stress, and stress
mediators, can influence the composition and function
of the gut microbiota is a relatively new concept (Lyte
et al. 2011). In fact, stress can influence the outcome of
bacterial infection, because enteric bacteria can respond
to the release of stress-related neurochemical mediators
by the host (Lyte et al. 2011). Moreover, it has been hypo-
thesized recently that bacteria act essentially as neuro-
active compound delivery vehicles, affecting host physio-
logy through the provision of neurochemicals. Specifically,
the presence of a stress-related neuroendocrine hormone
family of catecholamines has been demonstrated in
bacteria (Lyte, 2011).

Today’s conceptual framework of the most common
entities in gastroenterology, the functional gastrointestinal
disorders, such as irritable bowel syndrome and functional
dyspepsia, involves the interaction of psychological factors
and altered gut physiology via the gut–brain axis, where
brain and gut symptoms are reciprocally influencing each
other’s expression. Psychological, sexual and/or physical
abuse in early life has been suggested to play an important
role in the pathogenesis of functional gastrointestinal
disorders (Heitkemper et al. 2011; Wu, 2012; van Tilburg
et al. 2013). This is a time of particular vulnerability,
when neurological plasticity as well as establishment of
a relatively stable gut microbiota occurs.

Maternal separation in rodents has been widely used as
a model of early life stress that induces long-lasting hyper-
activity of the HPA axis (Ladd et al. 2000; Barreau et al.
2004b; Daniels et al. 2004; Lippmann et al. 2007; Aisa et al.
2008; Gareau et al. 2008; Oines et al. 2012), anxiety-like
behaviour (Varghese et al. 2006; Lippmann et al. 2007;
Desbonnet et al. 2010; O’Mahony et al. 2011; Abelaira et al.
2013; Li et al. 2013), visceral hypersensitivity (Eutamene
et al. 2007; O’Mahony et al. 2011; Moloney et al. 2012;
Felice et al. 2014) and altered cholinergic activity in the gut
(Gareau et al. 2007b; O’Malley et al. 2010) accompanied
by increased intestinal permeability (Söderholm et al.
2002; Barreau et al. 2004a; Garcı́a-Ródenas et al. 2006;
Eutamene et al. 2007; Gareau et al. 2007b; Oines
et al. 2012).

Maternally separated rats show also increased neuro-
nal activation in response to a physical stressor, such
as colorectal distension (Felice et al. 2014), probably
due to central sensitization to noxious visceral stimuli
(Chung et al. 2007), similar to what has been reported
for irritable bowel syndrome patients (Tillisch & Labus,
2011; Tillisch et al. 2011; Larsson et al. 2012). Indeed, this
model results in a dysfunctional gut–brain axis, mimicking
many of the features found in irritable bowel syndrome
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patients; therefore, it has been widely employed to study
the mechanisms behind the dysfunctional communication
between the gut and the brain in irritable bowel syndrome
(Barreau et al. 2007; Gareau et al. 2008; O’Mahony
et al. 2009, 2011). Similar to irritable bowel syndrome
(Ringel & Maharshak, 2013), in animal models these
alterations at physiological and behavioural levels are often
accompanied by altered gut colonization (Garcı́a-Ródenas
et al. 2006; O’Mahony et al. 2009; Barouei et al.
2012), and the use of probiotics appears to improve
the detrimental effects of stress (Garcı́a-Ródenas et al.
2006; Eutamene & Bueno, 2007; Eutamene et al. 2007;
Gareau et al. 2007a; Desbonnet et al. 2010; Distrutti
et al. 2013).

Our preliminary data show that gut microbiota is
essential for the expression of anxiety-like behaviour and
behavioural despair in mice, because maternally separated
germ-free mice do not show different behaviour when
compared with control germ-free mice (De Palma et al.
2012). However, we found that germ-free maternally
separated mice have increased levels of basal serum
corticosterone and altered cholinergic nerve function
(De Palma et al. 2012), similar to previous studies
in conventional specific pathogen-free animals (Gareau
et al. 2006, 2007a,b; O’Malley et al. 2011), indicating that
these alterations occur independently of the presence of
gut microbiota.

Acetylcholine is the main excitatory neurotransmitter
in the mammalian enteric nervous system and plays an
important role in the control of gut motility (Olsson
& Holmgren, 2011). Park et al. (2013) demonstrated
that central administration of corticotrophin-releasing
hormone induces changes in colonic motility in mice,
accompanied by altered behaviour in the open field test.
Thus, change in the HPA axis may contribute to the
development of diverse pathologies; in this case, it altered
autonomic control of gut motility (Park et al. 2013). We
obtained similar results in germ-free mice subjected to
maternal separation, demonstrating that alterations at
the level of HPA axis activity disrupt colonic homeo-
stasis and, in turn, alter the gut environment, in a
microbiota-independent fashion.

Maternal separation also induces changes in the
morphology of the colon of conventional specific
pathogen-free maternally separated rats, with an increase
in the numbers of goblet cells in the crypts of the proximal
colon and a subsequent increase in secretion of mucus,
with a thinner mucosal layer (O’Malley et al. 2010).
It is therefore plausible that changes to the physiology
(Söderholm et al. 2002; Gareau et al. 2007b; O’Malley
et al. 2010; De Palma et al. 2012) and morphology
(O’Malley et al. 2010) of the gut of maternally separated
animals explain the reported changes in gut micro-
biota composition of maternally separated animals versus
control animals (O’Mahony et al. 2009).

Altogether, these findings suggest that stress, whether
acute or chronic, modulates the gut environment to select a
dysbiotic microbiota, which in turn can induce anxiety and
depression; however, the exact pathways and mediators of
this effect are yet to be elucidated. Commensal bacteria
might modulate brain biochemistry and behaviour
through the production of specific metabolites (Lyte, 2011;
Barrett et al. 2012a,b; Hsiao et al. 2013). It has been
shown previously that commensal bacteria can modulate
behaviour through the vagus nerve (Bercik et al. 2011b;
Bravo et al. 2011), affecting neurotransmitter metabolism
(Asano et al. 2012), or through alternative pathways, yet
to be defined (Bercik et al. 2010, 2011a).

It is plausible to postulate that in the future the
manipulation of gut microbiota, through probiotics
or symbiotics, might be a valuable adjuvant to
traditional medicine in the treatment of irritable
bowel syndrome patients with co-morbid anxiety or
depression.
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