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Abstract

With the numerous failures of pharmaceuticals to treat traumatic brain injury in humans, more 

researchers have become interested in combination therapies. This is largely due to the multimodal 

nature of damage from injury, which causes excitotoxicity, oxidative stress, edema, 

neuroinflammation and cell death. Polydrug treatments have the potential to target multiple 

aspects of the secondary injury cascade, while many previous therapies focused on one particular 

aspect. Of specific note are vitamins, minerals and nutrients that can be utilized to supplement 

other therapies. Many of these have low toxicity, are already FDA approved and have minimal 

interactions with other drugs, making them attractive targets for therapeutics. Over the past 20 

years, interest in supplementation and supraphysiologic dosing of nutrients for brain injury has 

increased and indeed many vitamins and nutrients now have a considerable body of literature 

backing their use. Here, we review several of the prominent therapies in the category of 

nutraceutical treatment for brain injury in experimental models, including vitamins (B2, B3, B6, 

B9, C, D, E), herbs and traditional medicines (ginseng, gingko biloba), flavonoids, and other 

nutrients (magnesium, zinc, carnitine, omega-3 fatty acids). While there is still much work to be 

done, several of these have strong potential for clinical therapies, particularly with regard to 

polydrug regimens.
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1. Introduction

Traumatic brain injury (TBI) affects 2.5 million individuals in the United States every single 

year and an estimated 1–2% of the population currently lives with chronic impairments due 
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to TBI [188,227]. In addition to the personal costs associated with brain injury, there is a 

considerable financial burden associated with primary care, rehabilitation and loss of 

productivity due to ongoing problems [88]. Despite the scope of the problem, over 30 years 

of animal research into the mechanisms and consequences of TBI have failed to yield any 

successful pharmaceutical agents to treat brain injury in humans. The many unsuccessful 

clinical trials have caused the field to reconsider several factors involved in clinical and 

preclinical experimental design. One particular problem with drugs that failed clinical trials 

is that they were too specific in their treatment targets. This has resulted in a large push in 

recent years to assess combination therapies, targeting multiple mechanisms of action [121]. 

As nutritionally-based therapies supplement basic biological function and have therapeutic 

action in the injured brain, these therapies may eventually represent an important component 

of combination therapies.

In the clinic, major changes in nutritional status have been observed after TBI. The 

combination of alterations in blood flow, excitotoxicity, free radical damage and altered 

global and regional metabolic rates has been identified as a major contributor to secondary 

damage from brain injury [194]. This metabolic crisis in the early stages of TBI can be 

detrimental to outcomes and recent studies have shown that supplementing basic nutrition 

can significantly improve functional outcomes in patients [82,181]. The guidelines for 

hospital management of TBI, provided by the Brain Trauma Foundation only include 

minimal standards for nutritional supplementation, suggesting that patients be placed on full 

nutritional replacement within 72 hours [18]. Of note is that standard nutritional replacement 

is typically formulated to contain carbohydrates, fats and proteins, with no vitamins or other 

minerals. Deficiencies in nutrition may further exacerbate TBI symptoms and the depletion 

of bioactive vitamins, minerals and other compounds may make it difficult for the body to 

process other pharmaceutical compounds, a phenomenon observed in experimental brain 

injury [5,97].

In this paper, we provide an overview of the overlooked area of nutritionally-based therapies 

in TBI, focusing on findings at the preclinical level. These therapies, collectively referred to 

as nutraceuticals, have historically been highlighted as preventative measures for chronic 

diseases [108,131,162]. However, in recent years, many vitamins, minerals and essential 

nutrients have risen to prominence as potential primary therapeutics and have generated 

increasing interest [37,165]. Nutraceutical therapies may provide an excellent avenue of 

treatment for many patients with brain injury. However, they are considerably understudied 

relative to other pharmacotherapies. The nutrients discussed below represent a wide array of 

therapeutic mechanisms which offer many opportunities for complementary or even 

synergistic mechanisms with other pharmaceuticals. Below we highlight the most promising 

findings from the experimental brain injury literature.

2. Vitamins

Vitamins are nutrients that are required for normal physiological functioning. Many play 

crucial roles within the brain in a variety of processes. While vitamins have been widely 

investigated for their roles in physiology, recent research has begun to examine the how they 

are involved in dysfunction of the nervous system, from chronic disease to acute insults. The 
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vitamins reviewed below were selected based on existing evidence showing benefits in the 

treatment of neural insults. A majority of the vitamins have been explored with regards to 

experimental brain injury, with the exception of vitamins A, B1, B5, B7, B12 and K. Of those 

that have not been directly assessed in experimental TBI models, vitamin B1 (thiamine) and 

vitamin B12 (cobalamin) may warrant investigation given that both are important for 

maintaining nerve function and deficiencies in either have been found to contribute to a 

variety of neuropathies [30,160].

2.1 Vitamin B2 (Riboflavin)

Riboflavin is a powerful antioxidant acquired from meat and dairy dietary sources. It is 

readily absorbed, required for normal cellular functioning [146], and has strong antioxidant 

effects [87]. Riboflavin rapidly reduces oxidized iron [87], high levels of which lead to free 

radical damage and lipid peroxidation [56,92]. It delays in vitro neuronal death under 

excitotoxic conditions in a dose- and time-dependent manner [117]. Vitamin B2 is absorbed 

and phosphorylated to become flavin mononucleotide and is then converted into flavin 

adenine dinucleotide [146], both of which act as electron carriers in biochemical oxidations 

and reductions. Additionally, riboflavin can be converted to dihydroriboflavin which reduces 

hemeproteins with high oxidative states of iron, further reducing oxidative damage 

[14,56,87].

Despite its status as a powerful antioxidant, there have been very few studies of 

neuroprotection with riboflavin. In experimental brain injury, a dose of 7.5 mg/kg led to 

substantial functional recovery in sensorimotor function as well as reference and working 

spatial memory [12,78]. Additionally, animals treated with vitamin B2 had smaller lesions, 

significant reductions of reactive astrocytes, and less edema. Moreover, in one study, vitamin 

B2 in combination with magnesium led to fewer impairments and accelerated functional 

recovery compared to either nutrient alone [12]. While the animal literature is limited, recent 

clinical studies using a nutrient combination drug that includes riboflavin and nicotinamide 

(trade name: Cytoflavin) marketed in Russia have shown promise following severe TBI. 

However, improvement was measured peripherally (e.g., reducing organ failure, sepsis, etc.) 

and it has not been used to assess neural impairments [110]. Vitamin B2 is a strong 

antioxidant with considerable clinical promise, but further research is needed to validate 

these findings, at multiple time points, varied dosing parameters, and in additional injury 

models.

2.2 Vitamin B3 (Nicotinamide)

Nicotinamide (NAM) is the amide form of nicotinic acid (niacin) and is currently used 

clinically in the treatment of pellagra [218]. Its mechanism as a neuroprotective agent has 

been extensively characterized following TBI and stroke [for review, see 201]. The 

protective actions of NAM are multimodal and include energy supplementation, poly(ADP-

ribose)polymerase-1 (PARP) inhibition, free radical scavenging and sirtuin inhibition [119]. 

NAM increases available energy in the injured brain as a precursor to nicotinamide-adenine 

dinucleotide (NAD+), which is a critical component of the electron transport chain, assisting 

in the production of ATP [120,222]. The sirtuins and PARP are metabolically-demanding 

processes which balance the repair of DNA damage and the inhibition of which has been 
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shown to improve outcomes for TBI [177]. Finally, NAD+ is a source of free radical 

scavenging as an electron donor [119]. The combination of these mechanisms has made 

NAM an attractive target for brain injury therapy.

Vitamin B3 treatment has been shown to be effective across multiple injury models, 

locations, and doses [70,73–75]. Specifically, NAM treatment has improved sensory, motor 

and cognitive function following frontal injury [66,74,198,200] and unilateral, sensorimotor 

cortex injury [52,75,77,144,148], with a time window of up to four hours [74,75]. Further, 

combination therapy with NAM and progesterone has shown additive effects, including 

reduced cell death, astrocyte activation, and substantially improved performance in multiple 

functional assessments [145]. While NAM has shown impressive preclinical efficacy, one 

study in aged rats observed no benefits, and a trend towards impairment at higher doses 

[180]. Histopathological outcome measures have also demonstrated neuroprotective actions 

of NAM administration. Acutely (<7 days post injury), vitamin B3 treatment reduced 

apoptosis, degenerating neurons, edema, and blood-brain barrier compromise, altered the 

number of activated astrocytes and decreased lesion size [70,73,80]. Chronically (> 20 days 

post injury), NAM treatment reduced lesion size and active astrocytes 

[52,66,74,75,77,144,198,200]. These neuroprotective effects of NAM are corroborated by 

brain injury studies specifically examining the downstream targets of NAM, namely the 

sirtuin receptor, supplementation of NAD+ and inhibition of NAD phosphate oxidase, an 

enzyme involved in oxidative stress [7,46,207,229].

The preclinical evidence in rats suggests that NAM may be an interesting treatment to 

explore in a clinical population. However, there are several problems to consider. A primary 

concern is that it may have poor actions in aged individuals. With demonstrated, 

fundamental changes to the NAD+ complex during cellular aging [138,214], higher levels of 

NAM may cause toxicity. The reason is not immediately clear, but it is possible that these 

issues may be associated with actions at sirtuin receptors [154,222] or changes in free 

radical scavenging [113,222]. In addition to the challenge of aged populations, rodent 

models of TBI have shown that a 50 mg/kg dose was the minimum to show behavioral 

effects [74,75] and that to exhibit maximal recovery, a dose closer to 150–250 mg/kg per day 

may be necessary [144,145,198,200]. If this dose was translated directly to humans from the 

rodent model, it could possibly induce toxic reactions in humans, although doses as high as 

80 mg/kg have been tolerated reasonably well [21,83]. Even considering toxicity issues, 

NAM may exert protective effects following human TBI and be a particularly interesting 

target to be used in combination therapies as it is relatively easily administered and has few 

negative interactions with other drugs.

2.3 Vitamin B6 (Pyridoxine)

Vitamin B6 is a water-soluble, readily metabolized and excreted vitamin with relatively low 

levels of toxicity [13]. It has several different vitamer forms: pyridoxine, pyridoxal, and 

pyridoxamine, all of which are converted to pyridoxal 5′-phosphate (PLP), primarily in the 

liver [90,98]. PLP is the active coenzyme of vitamin B6, and is essential for the metabolism, 

catabolism, and transamination of amino acids [90] as well as several other physiological 

reactions [13]. It has been suggested that PLP increases the availability of molecules needed 
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for normal metabolic functioning, aids in glycogenolysis [22,135], and reduces 

excitotoxicity [13,151], all of which are proposed mechanisms for neuroprotective effects.

There is evidence from the experimental stroke field that PLP is neuroprotective following 

ischemic injury [90] and that the brain uprgegulates processes involved in PLP production to 

combat depletion [91]. In experimental brain injury, one study surveyed the effects of a low 

(300 mg/kg) and intermediate (600 mg/kg) dose of pyridoxine, administered 30 minutes 

after unilateral TBI [106]. Both doses demonstrated some improvements to sensorimotor 

function, but the higher dose provided increased performance across multiple behaviors. 

Additionally, only the 600 mg/kg dose demonstrated tissue sparing, suggesting that quite 

high doses may be necessary to see full benefits. However, chronic high doses of vitamin B6 

can cause considerable neural toxicity and behavioral impairments, including balance and 

gait problems [102,215], which limits the feasibility of long-term, high-dose treatment. 

More work is needed to determine whether an acute dosing paradigm, such as the one 

described above, would be effective for treating human TBI.

2.4 Vitamin B9 (Folic Acid)

Folic acid is best known for the role it plays in the closure of the neural tube, but it is also 

crucial for cell division, DNA synthesis and the maintenance of DNA methylation patterns 

[45]. While it has been researched heavily with regards to possible effects on cognition, 

particularly in the elderly, whether it improves cognitive function is debatable [48,172]. 

Folic acid, along with cobalamin and pyridoxine, is an important cofactor in the 

homocysteine cycle, which is crucial for a number of processes, including DNA expression 

and the synthesis of creatine, melatonin and norepinepherine [129]. Any beneficial effects 

seen in TBI would likely stem from folic acid’s action here, since high levels of 

homocysteine have been shown to induce apoptosis, DNA damage and PARP processes 

[103]. In experimental brain injury, mild beneficial effects have been observed in the very 

acute post-injury stage in a piglet model [133]. However, these effects were not replicated in 

a rodent model of TBI, and an increased dose also did not produce any benefit [199]. The 

few available studies make it difficult to draw conclusions, but generally the benefits of folic 

acid appear to be minimal in brain injury.

2.5 Vitamin C (Ascorbic Acid; Ascorbate)

Ascorbic acid is widely recognized as one of the most important endogenous free radical 

scavengers [54]. It has also been suggested to have a neuroprotective role in reducing 

damage from excitotoxicity [150]. As part of the general metabolic dysfunction in TBI, 

tissue levels of ascorbic acid have been shown to be severely reduced immediately [9] and 

do not return to normal until 72 hours post-injury [190]. Additionally, reduced vitamin C 

levels have been reported in aged animals as a potential mechanism for increased injury 

[130]. Despite this obvious dysfunction, relatively few studies have attempted direct 

supplementation of vitamin C. One such study showed that pretreatment with a combination 

of vitamin C (45–60 mg/kg) and vitamin E preserved ascorbic acid to near sham levels in 

injured rats and stimulated superoxide dismutase production [93]. Another study 

demonstrated preserved motor function and reduced vascular response as a result of vitamin 

C alone [205]. It is not immediately clear why so few studies have tested ascorbic acid for 
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brain injury. Further study is warranted; however, researchers must be cautious given the 

limited literature available on the effects of ascorbate in the injured brain.

2.6 Vitamin D

Vitamin D is known for its dermal synthesis from cholesterol during sun exposure [53]. 

Following synthesis, some is converted the active form, calcitriol, which is carried through 

plasma to multiple organs via vitamin D-binding protein [17]. A large portion of vitamin D’s 

neuroprotective effects are inferred from data on vitamin D deficiency [81] which suggest 

that it modulates apoptosis [187] and reduces oxidative stress, inflammation and 

excitotoxicity [165,182,187]. Deficiencies in vitamin D can contribute to declines in 

cognitive function, dementia and Alzheimer’s disease [118]. Additionally, it may act as an 

anti-inflammatory cytokine, dampening immune responses [1]. In the experimental brain 

injury literature, vitamin D is known for its beneficial effects when combined with 

progesterone [8,85,182] and has recently been extended to a clinical trial [4].

In experimental brain injury, vitamin D was initially explored in conjunction with 

progesterone for its potential to act synergistically, and also to investigate the relationship 

between age-related decline in vitamin D and brain injury [25]. Subsequent studies observed 

improvements in Morris water maze (MWM) acquisition [86] and reduced inflammation and 

neuronal loss [183]. Although effective in adult rats, it appears that this combination may be 

most beneficial in middle-aged animals, potentially because of existing vitamin D 

deficiencies. In middle-aged animals, this combination significantly reduced the 

proliferation of astrocytes, prevented MAP-2 degradation, and reduced neuronal loss [182]. 

The reason for the synergy of vitamin D and progesterone has yet to be fully elucidated, but 

one study has suggested that it is a combination of reductions in astrocyte activation and 

NFκB phosphorylation [183]. Although more studies are needed to validate vitamin D’s 

additive effects with progesterone under other conditions, there is mounting evidence that 

the combination of progesterone and vitamins may be a viable follow-up to the failures of 

progesterone in clinical trials [4,8,86,145,182,183]. The growing evidence supporting 

vitamin D, as well as its low toxicity, suggests this vitamin could fill that role. However, 

further exploration of effects in younger animals, a better understanding of the therapeutic 

window, and stronger characterizations of functional recovery need to be established prior to 

moving forward.

2.7 Vitamin E

Tocopherols and tocotrienols make up a group of compounds more commonly known as 

vitamin E, the primary fat-soluble, chain breaking antioxidant in the body [19,140]. The 

most biologically active form of vitamin E is α-tocopherol (α-T); it is the second most 

common form of vitamin E in western diets and a lipid-soluble antioxidant which reduces 

reactive oxygen species [63]. Treatment with vitamin E is effective for some forms of 

cancer, and prevents and repairs cell tissue damage following radiation [169]. In the central 

nervous system it has been investigated under lesion [176] and TBI models [31,101]. The 

neuroprotective effects of α-T are primarily mediated by its prevention of free radical 

propagation via the halting of polyunsaturated fatty acid oxidation chain reactions [20,167]. 

It may also have beneficial downstream effects including: altering protein kinase C signaling 
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[163], decreases in macrophage activation via CD36 signaling [39], increases of brain 

derived growth factor [209], and decreases in Nogo-A [217].

In models of TBI, α-T combined with polyethylene glycol reduced mortality by 50% and 

improved motor recovery of function [31]. Similar beneficial effects in cognitive function 

have been observed with α-T treatment alone, even when administered up to 90 days after 

injury [176,209,220]. Furthermore, vitamin E reduces amyloidosis and improves cognitive 

function after repetitive TBI in a model of Alzheimer’s disease [33]. Although these 

behavioral effects are substantial, one study has shown limited efficacy of vitamin E on lipid 

peroxidation in the acute post-injury phase [101], but others have highlighted improvements 

in markers of oxidative stress at later time points [93,167]. Additional studies have 

demonstrated that extended pretreatment confers the strongest reductions in lipid 

peroxidation and oxidative stress [55,209]. The preclinical data supporting vitamin E in TBI 

are strong, especially considering that there is a significant drop in plasma and brain levels 

of vitamin E following injury [93]. Further, the pharmacology in humans is known and is 

considered relatively safe in its use as an anticonvulsant [174]. While it has high lipid 

solubility and low toxicity [31,193], it takes a considerable amount of time to reach effective 

levels in the CNS [55] and can cause hemorrhage at very high doses [168]. These limitations 

should be taken into account when considering vitamin E either alone or in a polytherapy for 

patients.

3. Herbs and Traditional Chinese Medicines

Herbal remedies have been used in many cultures for a variety of medicinal purposes, 

ranging from dubious benefits to effective treatments for crippling disorders. Though a large 

portion of this medicine is comes from tradition rather than evidence-based approaches, 

there is a considerable amount of research emerging on specific medical benefits of the 

chemicals found in many herbs and roots. Of interest for those studying brain injury are the 

herbs that may affect aspects of the secondary cascade, namely those with antioxidant, anti-

apoptotic or neuroprotective effects.

3.1 Ginseng

Ginseng is a family of herbs that has been used in traditional Chinese medicine for many 

centuries. Though it is a plant with many complex molecules, several bioactive components 

have been identified. The primary class is a chemical group called saponins, of which the 

ginsenosides are the most important. Recently, ginseng has gained attention as a preventative 

for varied conditions such as influenza, cancer and even impaired cognition [112,159,226]. 

Interestingly, the common link between many of these diseases is inflammation, which 

ginseng has been shown to reduce [111]. In experimental TBI studies, combined saponins 

from ginseng have been shown to improve a variety of behavioral functions, both cognitive 

and motor in a dose-dependent fashion, with doses of 200 mg/kg showing the greatest 

benefits [84,95,104,210]. One study even found improvements when ginseng was 

administered 15 days after the initial injury [104]. These studies also found histopathological 

improvements: ginseng reduced markers of oxidative stress and inflammation [104,210], 

decreased cell loss [84,95,210] and reduced apoptosis [210]. Studies in TBI have yet to 
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evaluate the specific ginsenosides responsible for these beneficial effects, but there is a 

robust literature in the field of experimental stroke for researchers interested in this topic. 

The results from these studies suggest that ginseng may provide neuroprotection through a 

combination of anti-inflammatory and antioxidant mechanisms.

3.2 Gingko Biloba

Ginkgo biloba is a tree that dates back to prehistoric times, the leaf extract of which is 

commonly available as an over-the-counter supplement. The extract form contains several 

compounds, including flavonoids (see section below) as well as ginkgolides, which are 

likely the bioactive components [41]. Gingko has not been widely used in the treatment of 

brain injury, however it has been explored as a treatment for diseases related to TBI, 

including Alzheimer’s disease, with some beneficial effects observed [216]. One study has 

specifically assessed treatment of experimental TBI by ginkgo biloba extract and observed 

improvements in motor and cognitive function. Treatment also reduced cell loss in multiple 

regions of the brain, but failed to improve the immediate lesion cavity [79]. Another study 

utilized ginkgolide B, a substrate of the plant, and observed reductions in apoptosis and 

inflammatory markers [224]. Although much more evidence is needed to determine the 

efficacy of ginkgo in TBI, there are other promising studies regarding ginkgo and ischemic 

injury [126,220,228].

4. Flavonoids

Flavonoids are plant metabolites with many common dietary sources, including fruits, 

vegetables, teas and wine. They serve primarily as antioxidant agents, reducing free radicals 

in tissues [59]. Because of this, high dietary intake of flavonoids is associated with reduced 

risk for a number of diseases, including heart and cerebrovascular disease, diabetes and 

some types of cancer [100]. The brain injury field has taken note of these mechanisms and 

recently a number of laboratories have begun assessing the efficacy of the different 

flavonoids to treat experimental TBI. Further, Enzogenol, a bark extract containing multiple 

flavonoids, has already been assessed in a phase II clinical trial, in which it was deemed safe 

and suggested to accelerate recovery from mild TBI [186].

Due to the many types of flavonoids, several different compounds have been assessed in 

animal models of TBI. However, not all have had repeated assessment across multiple labs, 

limiting the generalization of the findings for specific flavonoids. Most flavonoids have 

potent antioxidant properties and work to improve redox status; through this, they indirectly 

reduce neuroinflammation as well. In experimental TBI, luteolin has received the most 

attention for its ability to reduce a variety of markers of oxidative stress, inhibit apoptosis, 

reduce inflammation and decrease edema [36,156,212,213]. Interestingly, one study using 

transgenic Alzheimer mice, demonstrated that luteolin administration prevented TBI-

induced upregulation of beta-amyloid, phosphorylated tau and glycogen synthase kinase-3 

[156]. One study suggested that the effects of luteolin are primarily mediated through the 

Nrf2 pathway [212] and another suggested that increased autophagy may account for other 

protective effects [213]. Unfortunately, only minimal motor testing has been performed to 

assess functional recovery using luteolin [36,212], and more will be needed to determine the 
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efficacy of this drug. Quercetin is another antioxidant flavonoid that has been shown to 

improve cognitive performance in the MWM and normalize firing rates of neurons in injured 

brains [164,219]. Further, markers of oxidative stress, inflammation and apoptosis were also 

reduced [219]. Pycnogenol, a commercially available supplement, reduced oxidative stress, 

inflammatory cytokines and improve markers of synaptic function after injury [6,161]. 

Several other antioxidant flavonoids for TBI have also been evaluated, albeit only in single 

studies. Baicalein, puerarin and formononentin improved oxidative status and reduced cell 

death [116,204], as well as reduced inflammatory markers and improved sensorimotor 

function [28,116].

Other flavonoids appear to have distinct actions apart from antioxidant properties. Of 

specific note is 7,8-dihydroflavone (7,8-DHF), which stimulates growth factors through 

activation of the TrkB BDNF receptor. Treatment with 7,8-DHF has been shown to improve 

markers associated with learning and plasticity, specifically by preventing TBI-induced cell 

death of new neurons and by rescuing phosphorylated creb and GAP-43 levels [2,27]. These 

actions improved spatial memory, even when the drug was administered several days after 

injury [2]. Another pair of flavonoids have demonstrated direct anti-inflammatory action in 

TBI models. Wogonin has been shown to reduce inflammation through a TLR4-mediated 

pathway, leading to improved behavioral function and reduced cell death and cavitation [26]. 

Flavopiridol, as a cell-cycle inhibitor, directly inhibits activation of microglia and astrocytes, 

causing smaller lesion volume, less glial scarring and providing recovery on motor and 

cognitive behaviors [40]. The various flavonoids have strong potential for the treatment of 

TBI, however, given the variety of substances, much more research is needed to identify 

common pathways by which they exert their effects and determine which are the most 

effective for TBI.

5. Other nutrients

5.1 Magnesium

Over the last several decades, a large body of evidence has accumulated suggesting that 

Mg2+ is vitally important in various neurological injuries and that it interacts with other 

micronutrients to maintain and promote cognitive function and performance [89]. In 

particular, the role that Mg2+ plays in the pathophysiological processes following traumatic 

brain injury (TBI) and the efficacy of Mg2+ therapy in promoting functional recovery across 

a variety of animal models has been well demonstrated [64,68,166,192,195]. Mg2+ has been 

shown to be effective in preventing excitotoxic damage involved in a variety of types of 

neural damage and is also involved in regulating antioxidant capabilities, particularly in the 

aging brain [11,196]. The importance of Mg2+ in normal cellular functioning has been well 

documented, as has its importance in the pathophysiology following injury. Previously, 

several reviews addressing these issues have been written [64,68,166,192] so the 

mechanistic actions will not be chronicled here; instead, the focus will be on functional 

outcome studies.

The use of Mg2+ therapies to promote recovery of function has been investigated for several 

decades. Treatment with magnesium has been used in models of ischemia [94,189,191], 

focal cortical lesions [67–69,72,76], and spinal cord injuries [107] to highlight but a few of 
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many studies. In experimental TBI, previous work has identified that dietary deficiencies in 

Mg2+ lead to poorer functional outcomes and increased cell death; however, some of these 

deficits can be rescued by Mg2+ administration and supplementation post injury [58,71,124]. 

Furthermore, at doses between 150–1000 μm/kg, Mg2+ administration in animals with 

normal diets causes improvements in sensorimotor functioning, memory and decreases in 

anxiety following TBI [43,65,125,197]. In addition, these animals demonstrate reductions in 

a variety of histopathological outcomes including glial proliferation, BBB breach, edema 

and neuronal death [43,44,51,139]. Collectively, these findings suggest that Mg2+ modifies 

recovery of function following neurological injury and that dietary magnesium may reduce 

the subsequent risks of such injuries. Although there have been recent failed clinical trials 

for both TBI and stroke [155,184], further research is warranted with regards to combination 

therapies. Future studies should focus on using Mg2+ to augment the existing effects of other 

pharmaceuticals and examine strategies for rapidly increasing brain concentrations of Mg2+.

5.2 Zinc

Zinc holds a controversial role in TBI pathophysiology. Numerous studies have identified 

increased, toxic levels of zinc following experimental injury, yet others have highlighted 

zinc deficiency as a major problem after TBI and demonstrated zinc supplementation to be 

an effective therapy. It has been repeatedly suggested that zinc may contribute to excitotoxic 

cell death [49,50] and studies in TBI have linked zinc accumulation to cell death [61,178]. A 

likely candidate for zinc damage in TBI is that cell death due to excitotoxicity releases 

excess zinc, which is normally highly protein-bound (~80%). This free zinc then interferes 

with cell processes via oxidative mechanisms, mitochondrial interference and MAPK-related 

cell death pathways [109]. Because of this, removal of excess zinc, via chelation or targeted 

chemicals has been evaluated across several studies with a mixture of beneficial [62,178], 

null [29,60] and detrimental results [42].

Because patients have shown zinc deficiency following TBI [122], zinc supplementation has 

been evaluated in both patients and rats. Results in patients showed a trend towards 

improvements [223] and in rats, zinc provided moderate improvements to function [34,35]. 

Further, zinc deficiency in rodents has exacerbated neural injury [221]. The mechanism by 

which zinc may exert its neuroprotective actions is not well understood; however, there are 

several likely candidates. One possibility is that zinc may affect redox signaling directly 

[115], however other studies call into question whether this action is beneficial or 

detrimental [15]. Given the extreme mix of results regarding zinc, researchers will need to 

carefully evaluate the potential effects, both beneficial and detrimental of using this as a 

therapy.

5.3 Carnitine

Normal mitochondrial function requires the amino acid derivative carnitine, of which, the 

active stereoisomer is acetyl-L-carnitine (ALC). ALC is synthesized in the brain [96] and is 

also commercially available as a supplement at nutrition retailers. It is easy to administer, 

crosses the blood-brain barrier [99] and has low toxicity [203]. Following neural insult, 

mitochondrial respiration and energy production are altered. Multiple studies have examined 

ALC’s ability to repair mitochondrial function and improve functional recovery after 
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hypoxic ischemia [153,171,203] glutamate-induced excitotoxicity [132], as well as brain 

[158] and spinal cord injury [10,32,141,142,179,225]. The specific mechanism by which 

ALC exerts its effects is unknown, but it is likely to involve increases of ATP through the 

NADH+ mediated electron transport chain and reductions of high levels of acyl-CoA esters 

that can impair mitochondrial processes [157]. Additionally, it may mediate cellular stress 

responses by inducing heat-shock proteins to repair and prevent damage [23].

Many studies of spinal cord injury have utilized ALC to improve mitochondria function and 

demonstrated critical neuroprotection [123,142,143,175,211]. Despite these findings in a 

closely-related field, only one has assessed the effects of carnitine in TBI. The researchers 

observed improvements to near-sham levels in motor and cognitive functioning early after 

injury and lesion volumes were significantly reduced [158]. While the animal studies are 

limited, a human study (nonrandomized, open-label) in retired National Football League 

players used ALC as part of a combination therapy which improved performance and brain 

perfusion in players who received multiple TBIs [3]. Additionally, it has been used in the 

clinical treatment of Alzheimer’s disease, depression, age, diabetes, ischemia and other 

neurological diseases specifically associated with metabolic compromise 

[16,136,149,173,185]. One potential concern is that the majority of experimental studies on 

ALC were performed in the immature brain [142,158,203] and more research needs to be 

completed to determine if ALC is effective in other populations. Additional experiments are 

required to explore sex differences, and determine whether the therapeutic window can be 

extended beyond 1-hour post-injury [158]. Although the safety index and beneficial effects 

of ALC is promising, research supporting its effects following TBI is still in its infancy.

5.4 Omega-3 Fatty Acids

Omega-3 acids are polyunsaturated fats found in both plants and fish and have received 

much attention regarding prevention of cancer, heart disease and stroke, although the scope 

of these effects are debated [24]. They play a varied role in the CNS, providing a substrate 

for neuronal membrane phospholipids, modulating neurotransmission, and protecting cells 

from oxidative stress and inflammation through metabolites [134]. These acids have been a 

subject of interest in the field of TBI for several years, particularly with regard to their use as 

a prophylactic treatment. Multiple recent reviews have emphasized the potential for these in 

TBI [57,128], thus this section will only briefly discuss their putative mechanism and 

potential.

Omega-3 acids in brain injury are thought to act by two primary mechanisms, but potentially 

have numerous other effects as well. First, they modulate neuronal survival by preventing 

axonal loss after injury. This occurs by increasing BDNF levels, reducing oxidative stress, 

and preventing synapse degradation [105,208]. Second, they are strong anti-inflammatory 

agents, actively reducing pro-inflammatory cytokines such as TNF-α, IL-6, and C-reactive 

protein and promoting the clearance of neutrophils [47,114]. In addition to these 

mechanisms, there are several suggested effects with less evidence. Notably, AMPA receptor 

modulation may reduce levels of excitotoxicity as well as regulation of ion channels and 

Ca2+ pumps which may also reduce excitotoxicity and other problems associated with 

energy deficiency after brain injury [127,202].
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While the biochemical evidence is quite promising, there are relatively few studies that have 

examined functional outcomes associated with omega-3 acids and brain injury. Previous 

studies have examined the effects of modulating fatty acids prior to injury. One such study 

found that depletion of omega-3 acids led to worsened motor and memory deficits [38] and 

others have shown that supplementation prior to injury leads to improvements in motoric 

ability and learning [147,206,208]. Despite these promising results, a clinical trial examining 

fish oil and other compounds after injury found no improvements in mortality from brain 

injury, but did see improvements in some peripheral issues (e.g. infections) [137]. The 

cumulative evidence regarding omega 3 fatty acids is quite promising in the treatment of 

brain injury, however further investigation is needed. One of the biggest considerations is 

whether fish oils are only effective as a prophylactic treatment. While this may limit the 

applicability of these in the general populace, in vulnerable populations such as athletes or 

military personnel, omega-3 acids could provide strong benefits given the ease of integrating 

them into diet.

6. Discussion

There is a robust, yet disparate literature emerging on treatments using nutritionally-based 

therapies for the treatment of experimental brain injury. The largest challenges facing these 

therapies are similar to those in other areas of treatment, namely the need for replication and 

verification of effects and disinterest from pharmaceutical companies. Several of the 

nutraceuticals discussed above have evidence stemming primarily from a single laboratory 

(e.g., B-vitamins – Hoane laboratory, vitamin D – Stein laboratory). This underscores the 

need for additional research to verify effects in other models of brain injury and under other 

laboratory conditions to determine how truly translational these therapeutics are. 

Additionally, it is unclear whether some of these compounds are understudied (e.g. vitamin 

B6, vitamin B9, vitamin C) or whether, due to publication bias, neutral or negative results 

have not been published. The lack of clinical interest in many of these treatments is 

primarily a monetary issue. It is difficult to convince pharmaceutical companies to develop a 

drug that cannot be patented. There are some ways to work around this problem, and the 

clinical development of progesterone is good evidence for this [170]. However, the best 

solution would be for federal funding to explore treatment options that are difficult to patent.

Despite these concerns, many of which apply to any therapeutics being evaluated for brain 

injury, there is considerable promise in a number of nutritionally-based therapies given the 

current preclinical evidence. In particular, nicotinamide, magnesium, the flavonoids, and 

omega-3 acids have a broad body of research supporting their use in the treatment of TBI. 

Nicotinamide has potent neuroprotective effects through its multimodal mechanisms of 

supporting energy production, inhibiting PARP activity and free radical scavenging [119]. 

This has been borne out through studies of both experimental stroke and TBI over the course 

of many years [66,145,200,218]. Further, the time-window for recovery of function has been 

shown to be around 4 hours in the rat [74,75], which may fit into the timeframe for the 

treatment of human injuries. Magnesium, while primarily acting on only one target, 

excitotoxicity, has very strong effects in attenuating damage and providing functional 

recovery [65,125,197]. Unfortunately, recent failures in clinical trials indicate that is not 

efficacious on its own and may limit interest. However, in combination with treatments 

Haar et al. Page 12

Brain Res. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



targeting other aspects of the secondary damage cascade, there is still considerable potential 

for magnesium. The flavonoids are a diverse class of molecules, possessing strong 

antioxidant, anti-inflammatory and even growth factor-stimulating properties [2,26,164]. 

There is converging evidence from multiple laboratories and on the benefits of these in 

treating brain injury. The large drawback to treating brain injury with antioxidant agents is 

that many require very early administration for full efficacy [152], however one, 7,8-DHF, 

has shown improvements even when administered days after injury [2]. Finally, omega-3 

acids have shown large potential in the prophylactic treatment of TBI [57,147] and have 

broad mechanisms of action that affect several points in the secondary injury cascade, 

including inflammatory signaling and cellular plasticity [114,208].

It is unlikely that any of these treatments will be successful on their own in treating human 

brain injury. The biggest potential for all of the therapies discussed in this review is in 

combination therapy. While several of these have multimodal action on different aspects of 

the secondary injury cascade, none of them address all of the issues with brain injury (see 

Table 1 for a summary of mechanisms). Researchers interested in combining therapies such 

as these are advised to consider treatments with complementary mechanisms of action in 

order to provide additive or synergistic benefit. The vitamins and nutrients reviewed above 

have a variety of mechanisms, meaning they could readily be combined with each other or 

with existing pharmaceuticals in development. In the antioxidant category, numerous 

flavonoids, ginseng and vitamins B2, C, D, and E all have demonstrated beneficial effects. 

For excitotoxicity, the options are more limited, but magnesium provides relatively strong 

effects in blocking excitotoxic damage, and vitamin B6 may also have potential in this area. 

Two agents, vitamin B3 and carnitine, are effective neuroprotectants through their 

mechanism of energy supplementation. Additionally, several flavonoids and omega-3 acids 

improve neuroinflammatory status. Finally, the flavonoid 7,8-DHF and omega-3 acids 

improve function through other mechanisms such as stimulating growth factors. While 

toxicity needs to be monitored as nutrients are combined and used in very high doses, many 

of these have limited toxicity and are likely to have minimal interactions with other agents. 

This, combined with their diverse mechanisms of action could make them quite beneficial 

for inclusion in polydrug treatments.

Abbreviations

FDA U.S. Food and Drug Administration

TBI traumatic brain injury

NAM nicotinamide

PARP poly(ADP-ribose)polymerase-1

NAD+ nicotinamide-adenine dinucleotide

ATP adenosine triphosphate

DNA deoxyribonucleic acid

PLP pyridoxal 5′-phosphate
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MWM Morris water maze

MAP-2 microtubule associated protein-2

NFκB nuclear factor kappa-light-chain-enhancer of activated B cells

α-T α-tocopherol

CNS central nervous system

Nrf2 nuclear factor (erythroid-derived 2)-like 2

7,8-DHF 7,8-dihydroflavone

TrkB tyrosine kinase receptor B

BDNF brain derived neurotrophic factor

CREB cyclic adenosine monophosphate (cAMP) response element-binding protein

GAP-43 growth associated protein 43

TLR4 toll-like receptor 4

MAPK mitogen-activated protein kinases

ALC acetyl-L-carnitine

acyl-CoA acyl-coenzyme A
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Highlights

Several essential nutrients show efficacy treating TBI in experimental models.

Vitamins and other nutrients may play a strong role in future polydrug therapies.

Nutraceuticals represent low-cost therapeutics with large potential benefits
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