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Abstract
Purpose of review—Humans eating diets low in choline develop fatty liver and liver damage.
Rodents fed choline–methionine-deficient diets not only develop fatty liver, but also progress to
develop fibrosis and hepatocarcinoma. This review focuses on the role of choline in liver function,
with special emphasis on the epigenetic mechanisms of action.

Recent findings—Dietary intake of methyl donors like choline influences the methylation of
DNA and histones, thereby altering the epigenetic regulation of gene expression. The liver is the
major organ within which methylation reactions occur, and many of the hepatic genes involved in
pathways for the development of fatty liver, hepatic fibrosis, and hepatocarcinomas are
epigenetically regulated.

Summary—Dietary intake of choline varies over a three-fold range and many humans have
genetic polymorphisms that increase their demand for choline. Choline is an important methyl
donor needed for the generation of S-adenosylmethionine. Dietary choline intake is an important
modifier of epigenetic marks on DNA and histones, and thereby modulates the gene expression in
many of the pathways involved in liver function and dysfunction.
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INTRODUCTION
Humans must eat diets containing choline [1] because its metabolite phosphatidylcholine
constitutes 40–50% of cellular membranes and 70–95% of phospholipids in lipoproteins,
bile and surfactants [2]; it is needed to form acetylcholine, an important neurotransmitter
[2]; its metabolite betaine is needed for normal kidney glomerular function, and perhaps for
mitochondrial function [2]; and it provides one-carbon units, via oxidation to betaine, to the
methionine cycle for methylation reactions [2].

There is a recommended adequate intake for choline (about 550 mg/day) [3], but choline
intake in the diet has been estimated to vary by as much as three-fold – the lowest quartile
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and the highest quartile of intake were approximately 150mg and 500 mg/day choline
equivalents, respectively, in the Framingham Offspring Study [4], the Atherosclerosis Risk
In Communities study [5,6], and the Nurse’s Health Study [7]. Intake of choline is likely to
be lower in low-income countries. Patients fed with total parenteral nutrition (TPN)
solutions receive only small amounts of choline (from the lipid emulsions) and many
become choline deficient [8].

CHOLINE AND LIVER FUNCTION
Much of choline metabolism occurs in the liver, and this is among the first organs to
accumulate choline absorbed from the intestine [2]. When humans eat diets low in choline,
fatty liver is one of the earliest adverse events, and in some people significant hepatic
damage occurs (as assessed by release of hepatic enzymes into blood) [9]. People with one
of several very common genetic polymorphisms (SNPs) in the genes of choline metabolism
are more likely to develop hepatic dysfunction when deprived of choline [10–12], and these
people have abnormal plasma metabolomic profiles even when fed a normal diet containing
choline [13]. Patients fed with TPN solutions often develop liver dysfunction, and in some,
this resolves when they are fed a source of choline [8,14]. We do not know whether the
patients who are susceptible to TPN-associated liver damage are those who have SNPs in
the genes of choline metabolism.

Rodents also develop fatty liver when fed diets low in choline and methionine [2,15], and
this animal model is commonly used for the study of nonalcoholic fatty liver disease
(NAFLD) which affects 20% of the global population, 50% of diabetic patients, and 90% of
morbidly obese people [16]. The likely mechanism responsible for the development of fatty
liver in choline deficiency is related to the synthesis of very-low-density lipoprotein
(VLDL), which is the primary package within which triglycerides are secreted from the liver
[17]. Phosphatidylcholine is a required component of the VLDL envelope, and when it is not
available, triglycerides cannot be exported from liver and hence accumulate in the cytosol
[17]. Phosphatidylcholine is formed in the liver by methylation of phosphatidylethanolamine
or from incorporation of preformed choline (usually from the diet) [17]. Premenopausal
women are less likely to develop fatty liver on a low-choline diet because estrogen induces
the hepatic gene (PEMT) that is responsible for de novo formation of phosphatidylcholine
[10]. In more than 20% of premenopausal women, a SNP in PEMT leaves them less
responsive to estrogen induction of this gene, and they must eat choline to prevent
development of fatty liver [10,11,18].

In people, NAFLD sometimes progresses to liver injury and hepatocarcinoma [19], and the
choline–methionine-deficient rodent model may help us to understand the underlying
reasons for this progression. Rats and mice fed a diet low in choline–methionine content first
develop fatty liver, then the liver becomes fibrotic, followed by the development of foci of
enzyme-altered hepatocytes which express γ-glutamyltranspeptidase [19] and the placental
form of glutathione S-transferase [20] similar to those precancerous cells induced by
chemical carcinogens [21,22▪▪]. Eventually, these animals develop adenomas and
hepatocellular carcinomas [21]. Adding choline to this deficient diet completely prevents the
development of cancer in experimental animals, suggesting that choline itself has an
important role [21]. It is interesting that hepatocytes in cell culture, which are slowly shifted
to growth media low in choline concentration, also transform into hepatocarcinoma cells
[23]. This suggests that the underlying mechanisms for this response to low choline are
intrinsic to the hepatocytes. Choline–methionine deficiency also sensitizes rodents to liver
carcinogens such as aflatoxin B1 [24]. For example, the dose of aflatoxin B1 needed to
induce hepatocarcinomas was greatly reduced in rats fed low-choline–methionine diet [24].
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Thus, choline–methionine deficiency acts as an initiator and as a promoter of
carcinogenesis.

Several potential mechanisms whereby diets low in choline and methionine result in
hepatocarcinogenesis have been explored. These include [22▪▪] liver necrosis with
consequent regeneration; induction of oxidative DNA damage and lipid peroxidation
because of free radical leaks from mitochondria, with subsequent oxidation of DNA bases
resulting in nicks and deletions during base repair; altered protein kinase C signaling
because of accumulation of diacylglycerol; and loss of liver apoptotic responses. This
review will focus on yet another proposed mechanism – the alteration in the status of labile
epiloci induced by methyl devoid diets [25].

ROLE OF METHYL-DONOR NUTRIENTS (METHIONINE, CHOLINE, AND
FOLATE) IN SUSTAINING METHYLATION CAPACITY

After S-adenosylmethionine (SAM) is used tomethylate a substrate, S-
adenosylhomocysteine and then homocysteine is formed. To regenerate methionine,
homocysteine (which is toxic for cells) must be methylated, and the resulting methionine
can then be converted to SAM [26]. This methionine cycle in liver utilizes methyl groups
from methyl-tetrahydrofolate or from betaine to convert homocysteine to methionine.
Choline is the precursor for betaine formation and, therefore, for many of the methyl groups
donated to homocysteine via the enzyme betaine homocysteine methyltransferase (BHMT).
BHMT processes a significant portion of cellular homocysteine as Bhmt knockout mice
become hyperhomocysteinemic even under adequate supply of dietary methyl-
tetrahydrofolate [22▪▪].

As discussed later, methylation of DNA and histones constitutes an important mechanism
for modulating gene expression called epigenetic regulation. It is not surprising that
alterations in dietary choline supply or utilization shape the epigenome.

EPIGENETICS
Epigenetic regulation of gene expression involves the chemical modification of nucleotides
in DNA at specific locations. Usually, DNA is not present in cells in the linear form that we
so commonly picture it as being, but rather DNA is tightly wound around proteins (histones)
[27] (Fig. 1). The positively charged DNA is attracted to negatively charged histones,
forming a compact spherical complex. One mechanism for modifying this tightly wound
structure occurs when specific cytosine residues are methylated [approximately 70% of the
cytosine residues adjacent to guanines (CpG) in genes are methylated as are the intergenic
CpG islands and the CpGs in transposable elements that are so common in the human
genome [27]]. This CpG methylation is achieved by the enzymatic transfer of methyl groups
from SAM to cytosine. When CpGs on DNA are methylated, they attract methyl-binding
proteins, which then attract histone deacetylases [27]. These enzymes remove acetyl groups
on specific lysine residues in histones and thereby increase the negative charge on the
protein. The tight chromatin complex formed by positively charged DNA and negatively
charged histones prevents the transcription factors from reaching the DNA to activate gene
expression. When DNA CpGs are not methylated, the DNA histone interaction is weaker,
opening up the chromatin and creating a permissive environment for gene transcription
[28,29]. Simply stated, DNA methylation usually shuts genes off.

As discussed above, acetylation of histones is important for maintaining the structure of
chromatin, but methylation of histones is also an important epigenetic signal (mono-methyl
and di-methyl lysine 9 on histone H3) that represses gene transcription [30], while di-methyl
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and tri-methyl lysine 4 on histone H3 are enriched in areas with transcriptional active
chromatin [31]. Using SAM as the methyl donor, mono-methyl and di-methyl lysine 9 on
histone H3 are formed by G9a histone methylase [32], whereas tri-methyl lysine 9 on
histone H3 is formed by SUV39 methylase [33]. DNA methylation and histone methylation
mechanisms exhibit crosstalk, creating a reinforcing signaling system controlling gene
expression.

Alterations in the epigenome are more frequent during sensitive periods of development
when progenitor cells are dividing and not yet differentiated [34]. During development,
profound epigenomic transformations take place, including DNA methylation catalyzed by
DNMT3 [35]. Once established, the epigenome maintains a relatively stable state of
transcription in mature somatic cells. During mitosis, this pattern of methylation is faithfully
copied to the sister DNA strands by the maintenance and chromatin maturation genes
DNMT1, HDAC1, and SMARCAD1 [36]. However, selected loci on genes exhibit a degree
of epigenetic plasticity and remain responsive to nutrient levels later in life.

Why is epigenetic flexibility important? As in any other living cell, the genetic information
encoded in the hepatocyte genome is fixed, but an epigenetic regulatory mechanism is
superim-posed to achieve flexibility in processing the genetic information. Epigenetic marks
determine why cells with the same genetic code can have different differentiated phenotypes
(somatic individuality): hepatocytes express different genes than do Kupffer cells, stellate
cells, endothelial cells or fibroblasts in the liver [37]. Epigenetic marks can permit metabolic
flexibility (adaptation of metabolic pathways in response to the environmental signals) [37].
Several genes central to hepatic metabolism are epigenetically regulated, including
peroxisome proliferator- activated receptor γ (PPARγ [38]), nuclear sterol response
element-binding protein 1-c (SREBP-1c) [39], alcohol dehydrogenase [39,40], glutathione
S-transferase [39,40], serine dehydrase [40], CYP450 2c11 [40], glucokinase [41], pyruvate
kinase [41,42], phosphoenolpyruvate carboxykinase [42], and enzymes of cholesterol
metabolism via epigenetic regulation of the liver X receptor [43]. Thus, liver function is
dependent, in part, on how well epigenetic regulatory mechanisms are established. At the
same time, liver is probably the most important organ that controls the availability of the
SAM needed to establish epigenetic marks.

THE LIVER IS AN IMPORTANT ORGAN CONTROLLING METHYLATION
Half of the methionine coming from diets is utilized by the liver for forming SAM that is
needed for methylation reactions and more than 85% of methylation reactions take place in
liver. Interestingly, the critical genes for controlling methyl metabolism and DNA
methylation capacity are themselves regulated by methylation. For example, MAT1A (forms
SAM) is underexpressed when it is hypermethylated [44], and the expression of the DNA
methyltransferases DNMT1 AND DNMT3A are controlled by methylation of specific CpG
sites [21,45▪,46]. The expression of G9a histone methylase is also decreased when CpGs at
specific sites in the gene are methylated [47,48]. Thus, rodents fed diets low in choline and
methionine undermethylate these methyltransferase genes and therefore overexpress these
methyltransferases [21,45▪,46–48]. This explains why some genes are paradoxically
overmethylated despite methyl-donor deficiency [46]. Interspersed elements containing
repetitive DNA sequences represent 30% of the mammalian genome [49], and the
methylation status of these elements is modified by the availability of dietary choline in
rodents [50]. An additional potential mechanism for methyl-deficiency modulation of DNA
methyltransferase activity in liver is focused on mitochondria. Abnormal membrane
composition causes the release of free radicals and oxidizes the nucleotides, forming 8-
hydroxydeoxyguanosine which inhibits cytosine methylation [51]. Mechanistically, the
accumulation of intracellular fat, inflammation, fibrosis and eventually carcinogenesis are
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multi-factorial, and epigenetic mechanisms occupy central roles in this scenario (Fig. 2). We
revisit here the effects of choline deficiency on the liver epigenome and on signal
transduction involved in the inflammation pathways.

EPIGENETIC MECHANISMS INVOLVED IN NONALCOHOLIC FATTY LIVER
DISEASE, NONALCOHOLIC STEATOHEPATITIS, AND PROGRESSION
TOWARD LIVER TUMORIGENESIS

Some of the major signals and mechanisms involved in NAFLD, nonalcoholic
steatohepatitis (NASH), and progression toward liver carcinogenesis are signaling by
cytokines/chemokines (TNFα [52,53], TGFβ [54,55], IL-6 [56], and IL-10 [57]), CCL2/
MCP1 targeting PPARα [58–60] (there is an increase in promoter methylation of
antifibrotic PPARα receptor protein in choline-deficient livers [61]), CCL5 increased by
hepatocellular lipid accumulation [62–64] and CXCL8/IL-8 [65]; increased de novo
synthesis of triglycerides [66]; decreased VLDL synthesis and export [67]; and decreased
long-chain fatty acid oxidation.

As discussed earlier, many of the hepatic genes involved in pathways for the development of
fatty liver are epigenetically regulated, including PPARγ [38], SREBP-1c [39], glucokinase
[41], pyruvate kinase [41,42], phosphoenolpyruvate carboxykinase [42], and enzymes of
cholesterol metabolism [43]. Fatty liver can progress to liver damage that is accompanied by
fibrosis [scar tissue synthesized by activated hepatic stellate cells (aHSCs, i.e.,
myofibroblasts)]. Recent studies explain how liver fibrosis is increased in low methyl-donor
environments [68–70]. Low levels of inflammatory signals combined with epigenetic
mechanisms normally keep hepatic stellate cells (HSCs) quiescent [69]. TGF-β1 signaling
mediates the activation of HSCs [71] by decreasing the expression of Phosphatase and
Tensin homolog (PTEN), a repressor of phosphatidylinositol 3,4,5 triphosphate kinase/
serine-threonine kinase Akt (PI3K/AKT) and extracellular signal-regulated kinase (ERK)
signaling pathways [72]. A new set of epigenetic marks is acquired by aHSCs and these act
to control gene expression so as to maintain the aHSC cellular phenotype [69]. Once
achieved, the epigenome of aHSCs results in increased DNMT1 expression and in increased
MECP2 levels with recruitment of histone modifiers [69,73,74] (Fig. 1). These changes
stabilize the aHSCs’ chromatin and maintain low PTEN expression, thereby ensuring the
progression of fibrosis. In summary, the fibrosis process is initiated upon HSC activation via
cytokines and growth factors and a new set of epigenetic marks is acquired that maintains
their new cellular phenotype [69]. The decreased availability of methyl donors thereby can
initiate and sustain hepatic fibrosis (Fig. 2). Interestingly, these modified epigenetic
mechanisms driving liver repair are heritable [75▪▪]. Newer generations are less responsive
to fibrosis because they generate decreased numbers of HSCs, increased expression of
antifibrogenic PPAR-γ, and decreased TGF-β. These adaptations were epigenetically
transmitted through the male germline, via histone modifications. This may explain the
presence of hypomethylated PPAR-γ in humans harboring mild forms of fibrosis in severe
methyl-deficient environments.

Mechanisms responsible for tumor-initiating events or tumor progression are also, in part,
epigenetic [76,77]. Many tumor suppressor genes are epigenetically regulated, including
genes for cell-cycle regulation (p15 and p16), apoptosis (DAPK and APAF-1), cell
adherence (CDH1 and CDH3), and DNA repair (BRCA1 and hMLH) [22▪▪]. Hepatocellular
carcinomas have an epigenome that is profoundly different from normal hepatocytes, with
gene-specific DNA overmethylation or undermethylation, altered histone epigenetic marks,
and abnormal expression of genes for DNA methyltransferases and histone-modifying
enzymes [77]. Methyl-deficient diets which caused hepatic cancers were associated with
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global and gene-specific epigenetic changes [25,78,79], including hypomethylation of c-myc
[80], c-fos, and c-Ha-ras [81]. These changes in cytosine methylation patterns occur after
short-term feeding of choline-deficient diets and before hepatocarcinomas develop,
suggesting a causal rather than a consequential role. Interestingly, mouse models in which
methylmetabolism has been perturbed by genetic manipulation, such as Mat1a−/− mice [in
which methionine adenosyltransferase (forms SAM) is deleted [82–84]] and Bhmt−/− mice
(in which BHMT, needed to transfer methyl moiety from betaine to homocysteine, is deleted
[22▪▪]), develop hepatic steatosis and hepatocarcinomas.

Other products of choline metabolism influence carcinogenesis and involve epigenetic
mechanisms. Lysophosphatidic acid (LPA), via G-protein-coupled transmembrane
receptors, regulates cellular proliferation, differentiation, morphogenesis, and protection
from apoptosis [85,86]. Phosphatidylcholine is a precursor for LPA formation [87]. The
genes encoding the receptors for LPA signal are regulated by the epigenetic mechanisms
[88]. Rodents fed choline–methionine-deficient diets had aberrant methylation of the gene
for the LPA1 receptor in a pattern similar to the methylation abnormalities described in
hepatocellular carcinomas [89].

CONCLUSION
Liver is the organ where choline, methyl folate, methionine, and SAM metabolic pathways
are most active, and it is the organ where most methylation reactions occur. The liver is very
sensitive to the availability of methyl donors in the diet, including choline. When deprived
of these nutrients, the liver becomes fatty, hepatocytes die, fibrosis develops, and eventually
foci of carcinomas appear. This progression occurs not only because these nutrients are
needed to produce important structural components (membranes) and signaling molecules
(e.g., LPA and acetylcholine), but also because these nutrients influence the epigenetic
regulation of gene expression.

Acknowledgments
Financial support was provided by the grants from the NIH (DK05595 and DK36530).

M. G. Mehedint and S. H. Zeisel have no financial interest in relation to this article.

REFERENCES AND RECOMMENDED READING
Papers of particular interest, published within the annual period of review, have been
highlighted as:

▪ of special interest

▪▪ of outstanding interest

Additional references related to this topic can also be found in the Current World Literature
section in this issue (p. 364).

1. Zeisel SH. Nutritional genomics: defining the dietary requirement and effects of choline. J Nutr.
2011; 141:531–534. [PubMed: 21270363]

2. Zeisel SH. Choline: critical role during fetal development and dietary requirements in adults. Annu
Rev Nutr. 2006; 26:229–250. [PubMed: 16848706]

3. Zeisel, SH. Institute of Medicine, National Academy of Sciences USA. Dietary reference intakes for
folate, thiamin, riboflavin, niacin, vitamin B12, pantothenic acid, biotin, and choline. Washington,
D.C: National Academy Press; 1998. Choline; p. 390-422.

Mehedint and Zeisel Page 6

Curr Opin Clin Nutr Metab Care. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. Cho E, Zeisel SH, Jacques P, et al. Dietary choline and betaine assessed by food-frequency
questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring
Study. Am J Clin Nutr. 2006; 83:905–911. [PubMed: 16600945]

5. Bidulescu A, Chambless LE, Siega-Riz AM, et al. Usual choline and betaine dietary intake and
incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. BMC
Cardiovasc Disord. 2007; 7:20. [PubMed: 17629908]

6. Bidulescu A, Chambless LE, Siega-Riz AM, et al. Repeatability and measurement error in the
assessment of choline and betaine dietary intake: the Atherosclerosis Risk in Communities (ARIC)
study. Nutr J. 2009; 8:14. [PubMed: 19232103]

7. Cho E, Willett WC, Colditz GA, et al. Dietary choline and betaine and the risk of distal colorectal
adenoma in women. J Natl Cancer Inst. 2007; 99:1224– 1231. [PubMed: 17686825]

8. Sentongo TA, Kumar P, Karza K, et al. Whole-blood-free choline and choline metabolites in infants
who require chronic parenteral nutrition therapy. J Pediatr Gastroenterol Nutr. 2010; 50:194–199.
[PubMed: 20038853]

9. Fischer LM, daCosta K, Kwock L, et al. Sex and menopausal status influence human dietary
requirements for the nutrient choline. Am J Clin Nutr. 2007; 85:1275–1285. [PubMed: 17490963]

10. Resseguie ME, da Costa KA, Galanko JA, et al. Aberrant estrogen regulation of PEMT results in
choline deficiency-associated liver dysfunction. J Biol Chem. 2011; 286:1649–1658. [PubMed:
21059658]

11. Da Costa KA, Kozyreva OG, Song J, et al. Common genetic polymorphisms affect the human
requirement for the nutrient choline. FASEB J. 2006; 20:1336–1344. [PubMed: 16816108]

12. Kohlmeier M, da Costa KA, Fischer LM, et al. Genetic variation of folate-mediated one-carbon
transfer pathway predicts susceptibility to choline deficiency in humans. Proc Natl Acad Sci USA.
2005; 102:16025–16030. [PubMed: 16236726]

13. Sha W, da Costa KA, Fischer LM, et al. Metabolomic profiling can predict which humans will
develop liver dysfunction when deprived of dietary choline. FASEB J. 2010; 24:2962–2975.
[PubMed: 20371621]

14. Buchman AL. The addition of choline to parenteral nutrition. Gastroenterology. 2009; 137:S119–
S128. [PubMed: 19874943]

15. Hebbard L, George J. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol
Hepatol. 2011; 8:35–44. [PubMed: 21119613]

16. Pagadala MR, McCullough AJ. The relevance of liver histology to predicting clinically meaningful
outcomes in nonalcoholic steatohepatitis. Clin Liver Dis. 2012; 16:487–504. [PubMed: 22824477]

17. Cole LK, Vance JE, Vance DE. Phosphatidylcholine biosynthesis and lipoprotein metabolism.
Biochim Biophys Acta. 2012; 1821:754–761. [PubMed: 21979151]

18. Fischer LM, da Costa KA, Kwock L, et al. Dietary choline requirements of women: effects of
estrogen and genetic variation. Am J Clin Nutr. 2010; 92:1113–1119. [PubMed: 20861172]

19. Corbin KD, Abdelmalek MF, Spencer MD, et al. Genetic signatures in choline and 1-carbon
metabolism are associated with the severity of hepatic steatosis. FASEB J. 2013 [Epub ahead of
print]. fj.12-219097.

20. Yoshiji H, Yoshii J, Ikenaka Y, et al. Inhibition of renin–angiotensin system attenuates liver
enzyme-altered preneoplastic lesions and fibrosis development in rats. J Hepatol. 2002; 37:22–30.
[PubMed: 12076858]

21. Shimizu K, Onishi M, Sugata E, et al. Disturbance of DNA methylation patterns in the early phase
of hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined diet in rats. Cancer
Sci. 2007; 98:1318–1322. [PubMed: 17640295]

22▪▪. Teng YW, Mehedint MG, Garrow TA, et al. Deletion of betaine-homocysteine S-
methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and
hepatocellular carcinomas. J Biol Chem. 2011; 286:36258–36267. The rodent studies performed
by Teng et al. revealed that genetic defects of choline metabolism that specifically impair the
provision of methyl groups lead to steatohepatitis and progression toward adenocarcinoma and
hepatocellular carcinoma. [PubMed: 21878621]

Mehedint and Zeisel Page 7

Curr Opin Clin Nutr Metab Care. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



23. Zeisel SH, Albright CD, Shin O-K, et al. Choline deficiency selects for resistance to p53-
independent apoptosis and causes tumorigenic transformation of rat hepatocytes. Carcinogenesis.
1997; 18:731–738. [PubMed: 9111207]

24. Schrager TF, Newberne PM, Pikul AH, et al. Aflatoxin–DNA adduct formation in chronically
dosed rats fed a choline-deficient diet. Carcinogenesis. 1990; 11:177–180. [PubMed: 2104783]

25. Pogribny IP, Shpyleva SI, Muskhelishvili L, et al. Role of DNA damage and alterations in cytosine
DNA methylation in rat liver carcinogenesis induced by a methyl-deficient diet. Mutat Res. 2009;
669:56–62. [PubMed: 19442675]

26. Baric I. Inherited disorders in the conversion of methionine to homocysteine. J Inherit Metab Dis.
2009; 32:459–471. [PubMed: 19585268]

27. Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical
applications. CMAJ. 2006; 174:341–348. [PubMed: 16446478]

28. Li G, Reinberg D. Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev.
2011; 21:175–186. [PubMed: 21342762]

29. Van Steensel B. Chromatin: constructing the big picture. EMBO J. 2011; 30:1885–1895. [PubMed:
21527910]

30. Fierz B, Muir TW. Chromatin as an expansive canvas for chemical biology. Nat Chem Biol. 2012;
8:417–427. [PubMed: 22510649]

31. Bassols J, Prats-Puig A, Vazquez-Ruiz M, et al. Placental FTO expression relates to fetal growth.
Int J Obes (Lond). 2010; 34:1365–1370. [PubMed: 20351740]

32. Kubicek S, O’Sullivan RJ, August EM, et al. Reversal of H3K9me2 by a small-molecule inhibitor
for the G9a histone methyltransferase. Mol Cell. 2007; 25:473–481. [PubMed: 17289593]

33. Loyola A, Tagami H, Bonaldi T, et al. The HP1alpha–CAF1–SetDB1-containing complex
provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep. 2009;
10:769–775. [PubMed: 19498464]

34. Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene-
specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006;
20:43–49. [PubMed: 16394266]

35. Chedin F. The DNMT3 family of mammalian de novo DNA methyltransferases. Prog Mol Biol
Transl Sci. 2011; 101:255–285. [PubMed: 21507354]

36. Blusztajn JK, Mellott TJ. Choline nutrition programs brain development via DNA and histone
methylation. Cent Nerv Syst Agents Med Chem. 2012; 12:82–94. [PubMed: 22483275]

37. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet.
2007; 8:253–262. [PubMed: 17363974]

38. Fujiki K, Kano F, Shiota K, et al. Expression of the peroxisome proliferator activated receptor
gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of
diabetes. BMC Biol. 2009; 7:38. [PubMed: 19589179]

39. Esfandiari F, Medici V, Wong DH, et al. Epigenetic regulation of hepatic endoplasmic reticulum
stress pathways in the ethanol-fed cystathionine beta synthase-deficient mouse. Hepatology. 2010;
51:932–941. [PubMed: 19957376]

40. Pal-Bhadra M, Bhadra U, Jackson DE, et al. Distinct methylation patterns in histone H3 at Lys-4
and Lys-9 correlate with up- & down-regulation of genes by ethanol in hepatocytes. Life Sci.
2007; 81:979–987. [PubMed: 17826801]

41. Lomba A, Milagro FI, Garcia-Diaz DF, et al. Obesity induced by a pair-fed high fat sucrose diet:
methylation and expression pattern of genes related to energy homeostasis. Lipids Health Dis.
2010; 9:60. [PubMed: 20534152]

42. Xiong Y, Lei QY, Zhao S, et al. Regulation of glycolysis and gluconeogenesis by acetylation of
PKM and PEPCK. Cold Spring Harb Symp Quant Biol. 2011; 76:285–289. [PubMed: 22096030]

43. Plosch T, Gellhaus A, van Straten EM, et al. The liver X receptor (LXR) and its target gene
ABCA1 are regulated upon low oxygen in human trophoblast cells: a reason for alterations in
preeclampsia? Placenta. 2010; 31:910– 918. [PubMed: 20709391]

44. Zhang J, Gong C, Bing Y, et al. Hypermethylation-repressed methionine adenosyltransferase 1A as
a potential biomarker for hepatocellular carcinoma. Hepatol Res. 2012 [Epub ahead of print].
10.1111/j.1872-034X.2012.01099.x

Mehedint and Zeisel Page 8

Curr Opin Clin Nutr Metab Care. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



45▪. Pogribny IP, Tryndyak VP, Bagnyukova TV, et al. Hepatic epigenetic phenotype predetermines
individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. J
Hepatol. 2009; 51:176–186. Pogribny et al. clearly indicated a causal rather than a consequential
role of epigenetics in the development of NASH. New disease prevention strategies and
treatments targeting unstable epiloci can be developed based on these findings. [PubMed:
19450891]

46. Kovacheva VP, Mellott TJ, Davison JM, et al. Gestational choline deficiency causes global and
Igf2 gene DNA hypermethylation by up-regulation of Dnmt1 expression. J Biol Chem. 2007;
282:31777–31788. [PubMed: 17724018]

47. Davison JM, Mellott TJ, Kovacheva VP, et al. Gestational choline supply regulates methylation of
histone H3, expression of histone methyltransferases G9a (Kmt1c) and Suv39h1 (Kmt1a), and
DNA methylation of their genes in rat fetal liver and brain. J Biol Chem. 2009; 284:1982–1989.
[PubMed: 19001366]

48. Mehedint MG, Niculescu MD, Craciunescu CN, et al. Choline deficiency alters global histone
methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB J. 2010;
24:184–195. [PubMed: 19752176]

49. Estecio MR, Gallegos J, Dekmezian M, et al. SINE retrotransposons cause epigenetic
reprogramming of adjacent gene promoters. Mol Cancer Res. 2012; 10:1332–1342. [PubMed:
22952045]

50. Asada K, Kotake Y, Asada R, et al. LINE-1 hypomethylation in a choline-deficiency-induced liver
cancer in rats: dependence on feeding period. J Biomed Biotechnol. 2006; 2006:17142. [PubMed:
16877811]

51. Hitchler MJ, Domann FE. Metabolic defects provide a spark for the epigenetic switch in cancer.
Free Radic Biol Med. 2009; 47:115–127. [PubMed: 19362589]

52. Hui JM, Hodge A, Farrell GC, et al. Beyond insulin resistance in NASH: TNF-alpha or
adiponectin? Hepatology. 2004; 40:46–54. [PubMed: 15239085]

53. Zhou YJ, Li YY, Nie YQ, et al. Influence of polygenetic polymorphisms on the susceptibility to
nonalcoholic fatty liver disease of Chinese people. J Gastroenterol Hepatol. 2010; 25:772–777.
[PubMed: 20492333]

54. Annoni G, Weiner FR, Zern MA. Increased transforming growth factor-beta 1 gene expression in
human liver disease. J Hepatol. 1992; 14:259–264. [PubMed: 1380023]

55. Castilla A, Prieto J, Fausto N. Transforming growth factors beta 1 and alpha in chronic liver
disease. Effects of interferon alfa therapy. N Engl J Med. 1991; 324:933–940. [PubMed: 1900574]

56. Haukeland JW, Damas JK, Konopski Z, et al. Systemic inflammation in nonalcoholic fatty liver
disease is characterized by elevated levels of CCL2. J Hepatol. 2006; 44:1167–1174. [PubMed:
16618517]

57. Esposito K, Pontillo A, Giugliano F, et al. Association of low interleukin-10 levels with the
metabolic syndrome in obese women. J Clin Endocrinol Metab. 2003; 88:1055–1058. [PubMed:
12629085]

58. Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose
tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006; 116:1494–1505.
[PubMed: 16691291]

59. Ito M, Suzuki J, Tsujioka S, et al. Longitudinal analysis of murine steatohepatitis model induced
by chronic exposure to high-fat diet. Hepatol Res. 2007; 37:50–57. [PubMed: 17300698]

60. Rull A, Rodriguez F, Aragones G, et al. Hepatic monocyte chemoattractant protein-1 is
upregulated by dietary cholesterol and contributes to liver steatosis. Cytokine. 2009; 48:273–279.
[PubMed: 19748796]

61. Mikael LG, Pancer J, Wu Q, et al. Disturbed one-carbon metabolism causing adverse reproductive
outcomes in mice is associated with altered expression of apolipoprotein AI and inflammatory
mediators PPARalpha, interferon-gamma, and interleukin-10. J Nutr. 2012; 142:411–418.
[PubMed: 22259189]

62. Berres ML, Koenen RR, Rueland A, et al. Antagonism of the chemokine Ccl5 ameliorates
experimental liver fibrosis in mice. J Clin Invest. 2010; 120:4129–4140. [PubMed: 20978355]

Mehedint and Zeisel Page 9

Curr Opin Clin Nutr Metab Care. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



63. Desai MS, Mariscalco MM, Tawil A, et al. Atherogenic diet-induced hepatitis is partially
dependent on murine TLR4. J Leukoc Biol. 2008; 83:1336–1344. [PubMed: 18334542]

64. Wu H, Ghosh S, Perrard XD, et al. T-cell accumulation and regulated on activation, normal T cell
expressed and secreted upregulation in adipose tissue in obesity. Circulation. 2007; 115:1029–
1038. [PubMed: 17296858]

65. Jarrar MH, Baranova A, Collantes R, et al. Adipokines and cytokines in nonalcoholic fatty liver
disease. Aliment Pharmacol Ther. 2008; 27:412–421. [PubMed: 18081738]

66. Bradbury MW, Berk PD. Lipid metabolism in hepatic steatosis. Clin Liver Dis. 2004; 8:639–671.
xi. [PubMed: 15331068]

67. Zeisel SH, Blusztajn JK. Choline and human nutrition. Annu Rev Nutr. 1994; 14:269–296.
[PubMed: 7946521]

68. Koca SS, Bahcecioglu IH, Poyrazoglu OK, et al. The treatment with antibody of TNF-alpha
reduces the inflammation, necrosis and fibrosis in the nonalcoholic steatohepatitis induced by
methionine- and choline-deficient diet. Inflammation. 2008; 31:91–98. [PubMed: 18066656]

69. Bian EB, Huang C, Ma TT, et al. DNMT1-mediated PTEN hypermethylation confers hepatic
stellate cell activation and liver fibrogenesis in rats. Toxicol Appl Pharmacol. 2012; 264:13–22.
[PubMed: 22841775]

70. Tomita K, Teratani T, Suzuki T, et al. p53/p66Shc-mediated signaling contributes to the
progression of nonalcoholic steatohepatitis in humans and mice. J Hepatol. 2012; 57:837–843.
[PubMed: 22641095]

71. Gressner AM, Weiskirchen R, Breitkopf K, et al. Roles of TGF-beta in hepatic fibrosis. Front
Biosci. 2002; 7:d793–d807. [PubMed: 11897555]

72. Liu Y, Wen XM, Lui EL, et al. Therapeutic targeting of the PDGF and TGF-beta-signaling
pathways in hepatic stellate cells by PTK787/ZK22258. Lab Invest. 2009; 89:1152–1160.
[PubMed: 19668241]

73. Mann J, Chu DC, Maxwell A, et al. MeCP2 controls an epigenetic pathway that promotes
myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010; 138:705–714. 714.e701–
714.e704. [PubMed: 19843474]

74. Tao H, Huang C, Yang JJ, et al. MeCP2 controls the expression of RASAL1 in the hepatic fibrosis
in rats. Toxicology. 2011; 290:327–333. [PubMed: 22056649]

75▪▪. Zeybel M, Hardy T, Wong YK, et al. Multigenerational epigenetic adaptation of the hepatic
wound-healing response. Nat Med. 2012; 18:1369–1377. Short-term adaptations in liver repair
mechanisms are crucial for choline-induced liver injury. This is a first evidence of how these
rapid epigenetic modifications escape the resetting process during early life and manifest
themselves as a new phenotype in the next generation. [PubMed: 22941276]

76. Herceg Z, Paliwal A. Epigenetic mechanisms in hepatocellular carcinoma: how environmental
factors influence the epigenome. Mutat Res. 2011; 727:55–61. [PubMed: 21514401]

77. Pogribny IP, Rusyn I. Role of epigenetic aberrations in the development and progression of human
hepatocellular carcinoma. Cancer Lett. 2012 [Epub ahead of print]. S0304-3835(12)00082-1 [pii].

78. Poirier LA. Methyl group deficiency in hepatocarcinogenesis. Drug Metab Rev. 1994; 26:185–199.
[PubMed: 8082564]

79. Christman JK. Lipotrope deficiency and persistent changes in DNA methylation. Lipotrope
deficiency and DNA methylation. Adv Exp Med Biol. 1995; 375:97–106. [PubMed: 7645432]

80. Tsujiuchi T, Tsutsumi M, Sasaki Y, et al. Hypomethylation of CpG sites and c-myc gene
overexpression in hepatocellular carcinomas, but not hyperplastic nodules, induced by a choline-
deficient L-amino acid-defined diet in rats. Jpn J Cancer Res. 1999; 90:909–913. [PubMed:
10551317]

81. Christman JK, Sheikhnejad G, Dizik M, et al. Reversibility of changes in nucleic acid methylation
and gene expression induced in rat liver by severe dietary methyl deficiency. Carcinogenesis.
1993; 14:551–557. [PubMed: 8472313]

82. Lu SC, Alvarez L, Huang ZZ, et al. Methionine adenosyltransferase 1A knockout mice are
predisposed to liver injury and exhibit increased expression of genes involved in proliferation.
Proc Natl Acad Sci USA. 2001; 98:5560–5565. [PubMed: 11320206]

Mehedint and Zeisel Page 10

Curr Opin Clin Nutr Metab Care. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



83. Tomasi ML, Iglesias-Ara A, Yang H, et al. S-adenosylmethionine regulates apurinic/apyrimidinic
endonuclease 1 stability: implication in hepatocarcinogenesis. Gastroenterology. 2009; 136:1025–
1036. [PubMed: 18983843]

84. Ko KS, Tomasi ML, Iglesias-Ara A, et al. Liver-specific deletion of prohibitin 1 results in
spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatology. 2010;
52:2096–2108. [PubMed: 20890892]

85. Contos JJ, Ishii I, Chun J. Lysophosphatidic acid receptors. Mol Pharmacol. 2000; 58:1188–1196.
[PubMed: 11093753]

86. Fang X, Schummer M, Mao M, et al. Lysophosphatidic acid is a bioactive mediator in ovarian
cancer. Biochim Biophys Acta. 2002; 1582:257–264. [PubMed: 12069836]

87. Selvy PE, Lavieri RR, Lindsley CW, et al. Phospholipase D: enzymology, functionality, and
chemical modulation. Chem Rev. 2011; 111:6064–6119. [PubMed: 21936578]

88. Okabe K, Hayashi M, Yoshida I, et al. Distinct DNA methylation patterns of lysophosphatidic acid
receptor genes during rat hepatocarcinogenesis induced by a choline-deficient L-amino acid-
defined diet. Arch Toxicol. 2011; 85:1303–1310. [PubMed: 21290119]

89. Obo Y, Yamada T, Furukawa M, et al. Frequent mutations of lysophosphatidic acid receptor-1
gene in rat liver tumors. Mutat Res. 2009; 660:47–50. [PubMed: 19000703]

Mehedint and Zeisel Page 11

Curr Opin Clin Nutr Metab Care. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



KEY POINTS

• Choline and other dietary methyl donors are important for liver function.

• These nutrients are important modulators of epigenetic regulation of gene
expression.

• Pathways important for the development of fatty liver, hepatic fibrosis, and
hepatocarcinoma are regulated via epigenetic mechanisms.
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FIGURE 1.
The nucleosome structure. DNA is tightly coiled in nucleosome repeating units (rendering
captured with open-source java applet Jmol) composed of 147 base pairs of DNA wrapped
around a histone octamer made of two copies of four core histones H2a, H2b, H3, and H4.
The transcription of genes is modulated by how tightly the chromatin is packed, and
epigenetic marks on histones (at specific lysines such as K9 and K4) and on DNA can
modify this chromatin structure (see text). De novo methylation of the core nucleosome unit
by DNA methyltransferase 3b (DNMT3b) and the mechanism of histone deacetylation by
the methyl CpG-binding protein 2–histone deacetylase complex (MECP2–HDAC) are also
depicted.
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FIGURE 2.
Epigenetic mechanisms modify liver function. Dietary intake of methyl donors such as
methionine and choline modifies hepatic inflammatory signaling pathways as well as the
epigenetic marks regulating the expression of genes relevant to signaling pathways involved
in hepatic steatosis, fibrosis, and carcinogenesis.
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