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Abstract
Cholesterol is vital to normal brain function including learning and memory but that involvement is
as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol
influences learning tasks from water maze to fear conditioning even though cholesterol does not
cross the blood brain barrier. Excess cholesterol has many consequences including peripheral
pathology that can signal brain via cholesterol metabolites, proinflammatory mediators and
antioxidant processes. Manipulations of cholesterol within the central nervous system through
genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning
and memory but often in animals already otherwise compromised. The human literature is no less
complex. Cholesterol reduction using statins improves memory in some cases but not others. There
is also controversy over statin use to alleviate memory problems in Alzheimer’s disease. Correlations
of cholesterol and cognitive function are mixed and association studies find some genetic
polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with
a number of seemingly contradictory results and many complexities. Nevertheless, understanding
cholesterol effects on learning and memory is too important to ignore.
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The Effects of Cholesterol on Learning and Memory
Cholesterol is ubiquitous in the central nervous system (CNS) and vital to normal brain function
including signaling, synaptic plasticity, and learning and memory. Cholesterol is so important
to brain function that it is generated independently of cholesterol metabolism in the rest of the
body and is sequestered from the body by the blood brain barrier (BBB). A large number of
studies pioneered by Dietschy and Turley among others have confirmed that systemic
cholesterol levels do not influence cholesterol in the CNS (Dietschy, 2009; Dietschy and
Turley, 2001; Dietschy and Turley, 2004). Given the importance of cholesterol to normal brain
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function, the current review will focus on the role of cholesterol in one of the most important
functions of the brain – learning and memory.

Cholesterol Metabolism
Cholesterol metabolism in the CNS has a number of features in common with cholesterol
metabolism in the rest of the body. In both locations, acetyl-CoA is converted to 3-hydrox-3-
methylglutaryl-CoA (HMG-CoA) which is converted in a rate-limiting step to mevalonate by
the enzyme HMG-CoA reductase. Mevalonate is then converted to squalene which is converted
to lanosterol, which, through a series of 19 additional steps, is finally converted to cholesterol.
In the adult CNS, cholesterol is synthesized almost exclusively in glial cells – astrocytes and,
to a lesser extent, oligodendrocytes – with only a small amount of cholesterol synthesized in
neurons. As a result of the critical role played by cholesterol in CNS function, cholesterol
synthesis, metabolism, and excretion are all tightly regulated.

The major players in cholesterol synthesis, metabolism, and excretion and hence the major
areas of interest in studying the effects of cholesterol on learning and memory include
cholesterol itself, the enzyme HMG-CoA reductase, the cholesterol transport protein
apolipoprotein E (ApoE), the adenosine triphosphate (ATP) binding cassette (ABC) transporter
proteins A1 and G1 (ABCA1, ABCG1), the low-density lipoprotein receptor (LDLR) and
LDLR-related protein (LRP), the oxysterols 24S-hydroxycholesterol and 27-
hydroxycholesterol to which cholesterol is converted in the brain and body, respectively, and
the liver X-activated receptors (LXRs) for which oxysterols are ligands and that induce
expression of ApoE and ABCA1 genes (Benarroch, 2008).

CNS cholesterol represents almost 25% of the body’s total unesterified cholesterol and the
majority (~70%) is found in the myelin sheath with the rest found in glial and neuronal
membranes (Dietschy, 2009; Dietschy and Turley, 2001). Although a great deal of cholesterol
is synthesized by neurons in the developing brain, synthesis is greatly reduced in the adult brain
and takes place in glial cells (Goritz et al., 2006; Pfrieger, 2002). Cholesterol synthesis begins
in the endoplasmic reticulum of astrocytes and involves HMG-CoA reductase which is
regulated by cholesterol’s inhibition of sterol-regulated element binding protein (SREBP) that
binds to the sterol-regulated element-1 of the HMG-CoA reductase gene in the nucleus to
modify gene expression (Benarroch, 2008; Martins et al., 2009). Cholesterol in astrocytes is
bound to ApoE and transported into the cerebrospinal fluid (CSF) via the ABCA1 transporter
protein and taken up by neurons via the low-density lipoprotein receptor. The genes for both
ApoE and ABCA1 are controlled by Liver × receptors and as such are important regulators of
cholesterol synthesis. Liver × receptors, in turn, are activated by the cholesterol metabolite
24S-hydroxycholesterol and to a lesser extent by 27-hydroxycholesterol (Bjorkhem, 2009).
Cholesterol in the CNS is converted to 24S-hydroxycholesterol by the enzyme 24S-
hydroxylase (CYP24A1, a member of the cytochrome P450 family) and can cross the BBB to
be excreted from the brain (Bjorkhem et al., 2009; Russell et al., 2009). Cholesterol in the rest
of the body can be converted to 27-hydroxycholesterol by 27-hydroxylase (CYP27A1) and
cross the BBB into the CNS (Heverin et al., 2005) to act as a ligand at specific receptors (e.g.,
LXR) and regulate enzymatic activity.

Learning and Memory Paradigms
Human tests

Assessment of learning and memory in humans, typically described more broadly as the
measurement of cognitive function, consists of administering standardized tests designed to
quantify intelligence, assess list learning and recall, determine comprehension, and probe
different forms of procedural and episodic memory (Baldwin and Farias, 2009; Jacova et al.,
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2007; McDowell and Kristjansson, 1996). The number and type of test batteries designed to
test cognitive function continues to grow with as many as 18 different batteries designed to be
administered by computer (Wild et al., 2008). In some cases, learning and memory can be
assessed with components of more global intelligence tests including the Working Memory
Index of the Wechsler Adult Intelligence Scale (WAIS) or, in clinical settings, the cognitive
subscale of the Alzheimer’s Disease Assessment Scale (ADAS-cog). In other cases,
standardized tests have been specifically designed to measure cognitive impairment including
the widely used Mini Mental Status Exam (MMSE). The MMSE is a brief instrument used to
screen for dementia that is scored on a 30-point scale and tests orientation, registration, attention
and calculation, recall, and language and practice. Scores have age and education norms with
a score of less than 24 generally considered to be abnormal and indicative of mild cognitive
impairment with decreasing scores considered to index increasing severity of impairment.

Animal tests
The vast majority of experiments that have examined the effects of cholesterol on animal
learning and memory have used a relatively small number of behavioral paradigms including
the water maze and radial-arm maze, cued and contextual fear conditioning, passive and active
avoidance, and eyeblink conditioning.

Water maze
The water maze is a spatial navigation task also known as the Morris water maze (Morris,
1984) that assesses spatial learning and memory by allowing a mouse or rat to swim in a pool
of opaque water in which an escape platform has been placed. In the cued or visible platform
version, the platform is positioned above the water or its position just below the water is
indicated by a flag or other proximal cue. In the hidden-platform version of the task, the
platform is submerged and spatial cues are placed beyond the maze so that the subject must
navigate to the platform using these spatial cues. In addition to assessing learning of and
memory for a specific cue (e.g., the flag), the visible platform version of the task can assess
whether sensory and motor abilities have been compromised by a treatment or condition. For
example, a transgenic mouse may not be able to find the platform because it cannot swim as
well as wild-type controls or cannot see the flag.

Learning the water maze task is usually assessed over a number of trials and measured as the
time taken and the distance swum to the platform after the rodent is released from different
positions around the edge of the pool. Memory for the task is assessed on days after training
by allowing the rat or mouse to search for a platform that has been removed and measuring the
time spent in the quadrant where the platform used to be, the number of times it crosses the
position of the platform, and the time spent in the other quadrants of the pool.

Radial arm maze
The radial arm maze usually consists of a central start box from which radiate as many as
twelve but usually eight identical runways (arms) with a goal box at the end of each arm where
food or water can be left as a reward. The start box has a gate to each of the arms that can be
closed limiting the number of arms to which the subject has access. In some paradigms the
characteristics of the arms can modified so that they may be a different color, enclosed or
provided with a different texture. Each arm contains photo beams that determine entry and may
be used to determine speed. Runways entered and time to traverse the runway can also be
assessed by an observer who should be “blind” to the experimental condition of the animals.
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Fear conditioning
Cued fear conditioning involves the delivery of a brief foot shock through an electrified floor
grid that is signaled by a cue such as a 30-second tone or light. Contextual fear conditioning
involves the delivery of a brief foot shock that takes place in a different, usually novel
environment. Cued and contextual fear conditioning may be combined within the same
chamber. The rodent response to foot shock is freezing and increased heart rate. These two
responses and particularly freezing have become standard indices of what is hypothesized to
be fear of the cue or the context with which the foot shock has been paired.

Passive and active avoidance
Like fear conditioning, active and passive avoidance tasks involve a brief foot shock delivered
through an electrified floor grid to a mouse or rat in a specific location. However, in avoidance
tasks, the rodent must either move from the location where it has experienced the shock (active
avoidance) or not enter that location (passive avoidance). An important aspect in both tasks is
that rodents normally prefer a dark location over a brightly lit one and the foot shock usually
occurs in the dark location. To avoid foot shock, a rat or mouse must either leave the dark side
of the enclosure for the brightly lit side (active) or stay in the brightly lit side and not enter the
dark side (passive). The day following active avoidance training, the latency with which a
rodent leaves the previously shocked location is measured. The day following passive
avoidance training the latency to enter the previously shocked dark location is measured. In
some cases, a rat or mouse may never enter the dark location and an upper latency cut-off value
is assigned (Crawley, 2000; Lu et al., 2009).

Eyeblink conditioning
Classical or Pavlovian conditioning of the eyeblink was originally developed in the early part
of the 20th century and modeled after Pavlov’s studies with dogs pairing an innocuous or neutral
stimulus such as a bell with a significant event such as food (Pavlov, 1927). In the case of
eyeblink or eyelid conditioning, the neutral stimulus is typically a brief tone or flashing light
and the significant event is a puff of air to the eye that elicits reflex closure of the eyelids. With
repeated pairings of the tone and air puff, subjects soon begin to close their eyes before the
puff reaches the cornea providing evidence that an association between the two has been
formed. Eyeblink conditioning is most commonly conducted with rabbits (Gormezano et al.,
1983) or rats (Schmajuk and Christiansen, 1990; Skelton, 1988).

Each of the foregoing behavioral paradigms and procedures has been used to assess the effects
of dietary, genetic and pharmacological manipulations of cholesterol, cholesterol synthesis and
cholesterol metabolism on animal learning and memory. In the case of the effects of cholesterol
on human learning and memory, dietary and pharmacological manipulations as well as genetic
differences have been assessed almost exclusively by psychological testing including
intelligence tests, cognitive testing including tests of recall, cognitive impairment and
dementia, and epidemiological analysis.

Cholesterol
Human Studies

There is a significant body of evidence that high cholesterol levels may be detrimental to human
learning and memory. A significant number of studies show that elevated serum cholesterol is
a risk factor for mild cognitive impairment (Foster, 2006; Kivipelto et al., 2001; Näslund et
al., 2000; Solomon et al., 2007; Yaffe et al., 2002) and dementia (Solomon et al., 2009b;
Whitmer et al., 2005) and that cholesterol levels are correlated with measures of intelligence
(Atzmon et al., 2002; Muldoon et al., 1997; Reitan and Shipley, 1963; van Exel et al., 2002;
Yaffe et al., 2002) except in the very elderly (Solomon et al., 2009a; West et al., 2008). Low
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HDL cholesterol has been correlated with deficits and declines in memory in midlife (Singh-
Manoux et al., 2008). A study of cholesterol synthesis showed the level of the cholesterol
precursors lanosterol and lathosterol are correlated with low memory performance as subjects
age (Teunissen et al., 2003). Epidemiological evidence also suggests a strong relationship
between cholesterol levels and Alzheimer’s disease - a disease noted for its severe decline in
learning and memory (Canevari and Clark, 2007; Evans et al., 2000; Hartmann, 2001; Jarvik
et al., 1995; Ledesma and Dotti, 2006; Lesser et al., 2009; Notkola et al., 1998; Simons et
al., 2001; Sjogren et al., 2006; Stewart et al., 2001).

There are other human studies, however, showing that increased cholesterol improves learning
and memory. For example, high cognitive functioning is correlated with high cholesterol (Elias
et al., 2005; Panza et al., 2006) and cholesterol may protect against cognitive decline especially
in the elderly (Mielke et al., 2005; Panza et al., 2006; van den Kommer et al., 2009; West et
al., 2008). A factor that is in some dispute is the relationship between LDL and HDL and
improved memory. West and colleagues have shown that better memory functioning is
associated with higher total and LDL cholesterol levels in the very elderly whereas Atzmon
and coworkers have suggested that only higher HDL levels are correlated with better cognitive
function in the very elderly (Atzmon et al., 2002; West et al., 2008).

Taken together, the human data suggest that there is a relationship between cholesterol levels
and adult learning and memory. This relationship appears to change as a function of age with
cholesterol having its most detrimental effects in middle age and it’s most beneficial or
protective effects in the very old. Interestingly, a recent study by Perry and colleagues found
that there was no association between cognitive measures and serum cholesterol concentrations
among the young (Perry et al., 2009).

Animal studies
Manipulations of cholesterol in animals have shown a number of different relationships
between cholesterol and memory. For example, decreasing cholesterol in aged animals
improves learning and memory for tasks such as the water maze (Kessler et al., 1986; Yehuda
et al., 1998; Yehuda and Carasso, 1993). Feeding mice a 2% cholesterol diet for eight weeks
may result in deficits in working memory in the water maze (Thirumangalakudi et al., 2008)
but not always (Li et al., 2003). Feeding middle-aged rats a diet high in cholesterol andfat for
eight weeks also resulted in deficits in working memory in the water maze (Granholm et al.,
2008). Rats, mice and rabbits given calcium channel blockers that reduce the esterification of
cholesterol and increase the hydrolysis of existing cholesterol esters (Nayler, 1999; Schachter,
1997) demonstrate improvements in a number of learning and memory paradigms including
passive avoidance (Quartermain et al., 2001), water maze (Kane and Robinson, 1999;
Quartermain et al., 2001), and eyeblink conditioning in rats and rabbits (Deyo et al., 1989;
Kane and Robinson, 1999; Quartermain, 2000; Woodruff-Pak et al., 1997).

Elevating cholesterol in young DBA/2 mice improves performance in the water maze - a task
normally impaired in this mutant (Miller and Wehner, 1994; Upchurch and Wehner, 1988).
Dufour and colleagues showed feeding adult rats 2% cholesterol enhances water maze learning
(Dufour et al., 2006). This effect was replicated by Micale and colleagues who also showed
the enhancement in water maze learning could be reversed by blocking steroid synthesis
(Micale et al., 2008). Animals that are either deficient in cholesterol or have cholesterol
synthesis blocked have problems with learning and memory in the water maze (Endo et al.,
1996; Voikar et al., 2002) and during classical conditioning of the rat eyeblink (Endo et al.,
1996; O’Brien et al., 2002; Voikar et al., 2002; Xu et al., 1998). The learning deficits in
eyeblink conditioning induced by impaired cholesterol synthesis were reversed by feeding rats
cholesterol (Xu et al., 1998).
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In a series of rabbit eyelid conditioning experiments we have documented the effects of feeding
cholesterol on both learning and memory. Prompted by Sparks’ original observation that
cholesterol-fed rabbits developed elevated levels of neuronal beta amyloid (Sparks et al.,
1994), we were surprised to find that rabbits fed cholesterol for eight weeks showed improved
trace classical conditioning and reflex facilitation of the NMR (Schreurs et al., 2003) and that
these facilitating effects of cholesterol were a function of the concentration (Schreurs et al.,
2007b) and duration of the cholesterol diet (Schreurs et al., 2007a). These facilitating effects
were generalized beyond NMR conditioning because an eight-week, 2% cholesterol diet also
facilitated rabbit heart rate conditioning – an index of conditioned fear (Schreurs et al.,
2007c). It wasn’t until beta amyloid plaques were induced by adding 0.12 PPM copper to the
drinking water given cholesterol-fed rabbits that learning suffered and rabbits performed more
poorly than normal chow-fed controls (Sparks and Schreurs, 2003). Woodruff-Pak and her
colleagues have shown that this cholesterol and copper-induced deficit in rabbit eyelid
conditioning can be reversed by the administration of galantamine – an acetylcholinesterase
inhibitor used to treat Alzheimer’s disease.

More recently, we have examined the effects of a 2% cholesterol diet on memory of NMR
conditioning and found that an eight-week cholesterol diet following ten days of paired
classical conditioning debilitated the rabbits’ ability to remember the association formed eight
weeks earlier (Darwish et al., 2010). This effect occurred in the absence of detectable diet-
induced changes in the cholesterol content of the brain which is consistent with the finds of
Diestchy and Turley (2004). Surprisingly, there was a significantly higher level of cholesterol
in the hippocampus and forebrain of rabbits given classical conditioning relative to unpaired
controls regardless of their diet, suggesting that cholesterol levels in the brain can change as a
function of experience (Dufour et al., 2006; Koudinov and Koudinova, 2001) as well as
experience being able to change as a function of cholesterol.

Peripheral effects of cholesterol
The interesting question that is raised by the effects of cholesterol on learning and memory
turns upon the inability of dietary cholesterol to cross the BBB into the CNS. The peripheral
effects of feeding rabbits cholesterol are atherosclerosis, inflammation, and liver toxicity. As
a result of elevated cholesterol, the liver produces increased lipoproteins rich in cholesterol
esters that stay in the bloodstream and lead to atherosclerotic lesions. High levels of LDL trigger
the endothelial cell expression of adherence molecules that mediate attachment of monocytes
and lymphocytes to the rabbit artery wall that then migrate into the wall and result in fatty
streaks (Jessup et al., 2004; Rader and Daugherty, 2008). Oxidized LDL in the artery wall
accumulates in macrophages that have differentiated from monocytes and develop into foam
cells. Other macrophages are activated by proinflammatory cytokines in the artery wall and
release more proinflammatory mediators including reactive oxygen and nitrogen species,
interleukin-1β, and tumor necrosis factor alpha (Hansson et al., 2008).

There is a body of literature documenting the effects of proinflammatory mediators including
tumor necrosis factor alpha and interleukin-1β on synaptic plasticity (Di Filippo et al., 2008;
Pickering and O’Connor, 2007) and membrane excitability (Schafers and Sorkin, 2008; Viviani
et al., 2007). Moreover, systemic injection of the inflammatory cytokine interleukin-
acquisition of classically conditioned eyeblink responses in rats (Servatius and Beck, 2003).
Although there is evidence that these peripheral inflammatory mediators are transported across
the BBB (Banks, 2005), breaches of the BBB including those produced by a high cholesterol
diet (Chen et al., 2008; Sparks et al., 2000) may increase the influence of these mediators in
the brain. Cholesterol in the rabbit induces hepatotoxicity by activating hepatic stellate cells,
producing fibrosis, fat deposition and ballooning degeneration leading to focal necrosis,
inflammatory reactions and lipogranuloma (Kainuma et al., 2006). Antioxidant activity of
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glutathione peroxidase and catalase decrease significantly in the cholesterol-fed rabbit liver
giving rise to increased oxidation and formation of lipid peroxidation and oxysterols (Mahfouz
and Kummerow, 2000).

Given the above, our ability to understand the mechanisms by which cholesterol influences
learning and memory may turn upon its peripheral as well as central effects. For example, there
is strong evidence that human cognitive impairment is correlated with the extent of cholesterol-
induced atherosclerosis both in peripheral arterial disease (Rafnsson et al., 2009) and in carotid
atherosclerosis (Romero et al., 2009). Regardless of the source of mediators thought to
influence learning and memory, learning and memory are functions of the CNS and it is the
CNS that must be reached by these mediators before they can have an effect.

Central effects of cholesterol
The central effects of feeding a cholesterol diet to rabbits have been explored by a number of
investigators including Sparks and his colleagues who have examined microglia (Xue et al.,
2007) and the role of copper in beta amyloid accumulation and clearance (Sparks et al.,
2002b; Sparks, 2004; Sparks, 2007; Sparks et al., 2007) and Ghribi and his co-workers who
have focused on the relationship between cholesterol and beta amyloid (Ghribi et al., 2006a;
Ghribi et al., 2006b; Jaya Prasanthi et al., 2008; Sharma et al., 2008). The most consistent
central effect of feeding rabbits cholesterol is the accumulation of intracellular beta amyloid –
a finding first reported by Sparks (Sparks et al., 1994) and replicated in a number of different
laboratories (Beach, 2008; Ghribi et al., 2006b; Ronald et al., 2009; Woodruff-Pak et al.,
2007; Wu et al., 2003; Zatta et al., 2002).

There is a very large body of data implicating cholesterol in the deposition of beta amyloid,
and thus, in Alzheimer’s disease (Canevari and Clark, 2007; Hirsch-Reinshagen and
Wellington, 2007; Ledesma and Dotti, 2006; Reid et al., 2007; Sparks, 2007) but see (Elder
et al., 2007). Although a detailed analysis of this literature is beyond the scope of the current
review, it is important to note that the relationship between cholesterol and beta amyloid is
complex (Bales, 2010; Grimm et al., 2007; Hartmann, 2001; Kirsch et al., 2003; Ledesma and
Dotti, 2006; Lukiw et al., 2005; Martins et al., 2009; McLaurin et al., 2003; Panza et al.,
2006; Raffai and Weisgraber, 2003; Roher et al., 1999; Sjogren et al., 2006; Wood et al.,
2007; Yanagisawa, 2002) and may involve a number of factors including: (1) the dependence
of beta and gamma secretase on cholesterol to cleave the amyloid precursor protein (APP)
(Frears et al., 1999; Wahrle et al., 2002), (2) the connection between apoE and Alzheimer’s
disease (Esler et al., 2002; Hartmann, 2001; Hoshino et al., 2002; Jarvik et al., 1995; Notkola
et al., 1998), (3) a cholesterol-induced overproduction of beta amyloid which blocks
cholesterol trafficking and leads to neurodegeneration (Liu et al., 1998; Yao and Papadopoulos,
2002), and (4) the role ApoE plays in calcium homeostasis (Hartmann et al., 1994; Veinbergs
et al., 2002). There is also evidence that beta amyloid may affect cholesterol (Hartmann,
2006). It should be noted that there are many who argue that beta amyloid has important normal
physiological functions (Grimm et al., 2007; Pearson and Peers, 2006; Wegiel et al., 2007)
that take place throughout life (Wegiel et al., 2007) and it is only when there is an imbalance
in beta amyloid production or clearance that it becomes toxic (Pearson and Peers, 2006; Sparks,
2007).

A growing body of evidence, particularly from cell culture systems and transgenic rodents,
indicates it is the oligomeric form of beta amyloid that is important for its toxic effects and its
effects on learning and memory (Billings et al., 2005; Billings et al., 2007; Dineley et al.,
2002; Lesne et al., 2006; Ma et al., 2007; Morgan, 2003; Shankar et al., 2008). The initial
debate about the relative effects of soluble versus insoluble beta amyloid (Despande et al.,
2006; Gouras et al., 2005; Haass and Selkoe, 2007; Kayed et al., 2003; Zerbinatti et al.,
2004) has given way to a more recent discussion of the oligomeric form of beta amyloid with

Schreurs Page 7

Neurosci Biobehav Rev. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



higher soluble oligomers being more toxic and having greater effects on synaptic plasticity
than monomers or dimers (Chafekar et al., 2008; Lacor et al., 2007; LaFerla et al., 2007;
Shankar et al., 2007; Shankar et al., 2008; Walsh and Selkoe, 2007). However, Shankar et al.
(2008) have shown that soluble beta amyloid dimers obtained from AD patients disrupted
memory for passive avoidance in rats. Finally, it should be noted that despite the considerable
body of evidence implicating beta amyloid in Alzheimer’s disease there is a significant
minority who have argued that it is not all clear that beta amyloid is the cause of the disease
(Joseph et al., 2001; Obrenovich et al., 2002; Pearson and Peers, 2006; Robakis, 2010;
Robinson and Bishop, 2002; Savory et al., 2002).

Statins
One of the major strategies for treating high cholesterol and the cardiovascular disease that
results is to interfere with the rate limiting step in cholesterol synthesis by inhibiting HMG-
CoA reductase using statins – HMG-CoA reductase inhibitors. Statins have been very
successful in lowering cholesterol and have been found to have a number of additional benefits
including improved endothelial function, decreased oxidative stress, decreased inflammation,
and improved immune responses (Jasinska et al., 2007; Liao and Laufs, 2005). As a result, it
is difficult to determine whether statins’ effects on learning and memory are dependent on their
effects on lowering cholesterol or on their non-cholesterol pleiotropic effects (Gotto Jr. and
Farmer, 2001; Jasinska et al., 2007; Liao and Laufs, 2005).

Human studies
There is some evidence, although controversial, that lowering cholesterol levels with statins
may reduce the rate of cognitive decline in Alzheimer’s disease patients (Arvanitakis et al.,
2008; Haag et al., 2009; Hoglund et al., 2005; Hoyer and Riederer, 2007; Solomon and
Kivipelto, 2009; Sparks et al., 2006; Zandi et al., 2005). These studies were prompted by earlier
reports that statins lowered the risk of developing dementia (Jick et al., 2000; Wolozin et al.,
2000). This area of research has been reviewed recently by McGuinness and colleagues for the
Cochrane Database and they found there was no significant evidence that statins either helped
or hindered cognition in Alzheimer’s patients. This is important because there is an older
literature of case reports and clinical trials suggesting that statins may have a negative impact
on cognition (Evans and Golomb, 2009; Muldoon et al., 2000). Given these mixed results of
statin effects on cognition in Alzheimer’s disease patients, some have suggested it might be
useful to parse the data in terms of whether or not statins in cross the BBB (Fassbender et al.,
2002; Haag et al., 2009; Sparks et al., 2002a; Thelen et al., 2006). Interestingly, Haag et al.
(2009) recently reported that statins reduced the risk of Alzheimer’s disease regardless of
whether or not they crossed the BBB. Nevertheless, in the most recent international,
multicenter, double-blind, randomized, parallel-group study with 640 patients, Feldman and
associates reported no clinical benefit of atorvastatin as a treatment for mild or moderate
Alzheimer’s disease (Feldman et al., 2010).

In contrast to studies with dementia patients, there is some evidence that statins may aid
cognition in non-demented subjects. For example, a study by Parale and colleagues shows that
statins improve cognitive function in non-demented patients over controls (Parale et al.,
2006). In another study, Bernick and co-workers found that statin use slightly reduced the rate
of cognitive decline in a group of normal subjects aged over 65 compared to matched non-
treated controls (Bernick et al., 2005). Although the preponderance of demented-patient
evidence suggests no strong positive or negative effects of statins on learning and memory, the
data from non-demented subjects suggest that others may benefit. It could be argued that by
the time dementia is advanced, there is so much pathology that statins can no longer be of
benefit. To emphasize this point, Sparks and colleagues found that taking statins reduced the
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incidence of cognitive decline for those at risk for but not showing signs of Alzheimer’s disease
(Sparks et al., 2008).

Animal studies
A number of animal studies have shown statins can facilitate learning and memory in rodents
(Li et al., 2006; Lu et al., 2007). Li et al. (2006) showed that simvastatin was able to improve
acquisition of the water maze task but had no effect on the visible platform version of the task
suggesting statins affect learning without affecting sensory or motor function. Lu et al.
(2007) demonstrated that rats suffering traumatic brain injury spent more time in the platform
quadrant following water maze training if given simvastatin or atorvastatin compared to saline
controls. Rats given simvastatin, a statin that crosses the BBB, did better than rats given
atorvastatin, a statin that does not cross the BBB. There was no comparison of the effects of
the statins on water maze performance in the absence of brain jury. In another water maze
experiment, Koladiya and colleagues found that statins were able to reduce L-methione-
induced vascular dementia that caused deficits in both acquisition and retention of the water
maze task (Koladiya et al., 2008). However, both learning and memory in rats given the statins
alone were no better than in controls.

Apolipoprotein E
ApoE is a glycoprotein secreted by glia that forms part of a lipoprotein particle that transports
cholesterol through the CNS particularly to neurons. ApoE may also be involved in other
transport functions particularly the clearance of beta amyloid. There is a significant body of
literature showing that learning and memory in both human and non-human subjects is affected
by the expression and specific allelic isoforms of ApoE (E2, E3, and E4). In Alzheimer’s
disease patients, the ApoE4 allele is over-represented and the ApoE3 allele is under-
represented (Martins et al., 2009) suggesting the former is a risk factor for the disease whereas
the latter may be protective. The suggestion that there is an increased susceptibility for
developing Alzheimer’s disease associated with the ApoE4 allele has been firmly established
(Brouwers et al., 2008; Chen et al., 2002; Deary et al., 2002; Mayeux et al., 2001; Poirier,
2005; Sparks, 1997).

Human studies
Despite the strong association between ApoE genotype and Alzheimer’s disease, the evidence
for the effects of ApoE on normal human learning and memory has been less clear. A number
of early studies found that there was an association between ApoE genotype and cognition in
middle-aged adults (Deary et al., 2002; Dik et al., 2001; Flory et al., 2000; Juva et al., 2000;
Mayeux et al., 2001; Wilson et al., 2002) whereas other studies found no such relationship in
the elderly (Small et al., 2000) or very elderly (Salo et al., 2002). More recent studies indicate
that the effects of ApoE genotype on cognitive function may be affected by cholesterol levels
(de Frias et al., 2007) but even when cognitive test results are adjusted for total cholesterol,
the ApoE4 allele still has a significant negative effect (Liu et al., 2008). The interaction between
ApoE allele and cholesterol levels points to the complexity of trying to examine a single aspect
of cholesterol’s effects on learning and memory in isolation. This becomes particularly
important for ApoE because it is involved not only in cholesterol transport but in beta amyloid
aggregation and clearance, and may be involved in tau phosphorylation, synaptic plasticity and
neuroinflammation (Kim et al., 2009).

Animal studies
Unlike human studies where ApoE cannot be manipulated, animal studies have examined the
effects of ApoE insertion and deletion in transgenic mice as well as infusion of ApoE directly
into rat brain to determine the effects of ApoE on learning and memory. Although some
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consistency has now emerged, it should be noted that, like the human studies, there are
contradictory findings on the effects of ApoE on learning and memory in mice (Lominska et
al., 2001) and that some of these differences may be due to strain and gender issues – a theme
that appears to pervade research with transgenic mice (Arndt and Surjo, 2001; Brooks et al.,
2004; van der Staay and Steckler, 2001). In a comprehensive study by Hartman and co-workers,
ApoE knockout mice were engineered to have the human isoforms of ApoE3 or ApoE4
expressed in astrocytes and these mice were compared to ApoE knockout mice and wild type
controls on a range of behavioral tasks (Hartman et al., 2001). Hartman and colleagues reported
that all the ApoE mice were more reactive than the wild type mice on sensory/motor tasks
including their startle response to a loud noise. However, ApoE mice showed no differences
in water maze acquisition or retention. It was only when mice were tested in the radial arm
maze that significant differences began to emerge in the acquisition of the task with ApoE4
mice needing more days to reach criterion and committing more errors than any other group.
In contrast to the Hartman et al. (2001) water maze data, other groups have shown that ApoE
deletions (Veinbergs et al., 2000) and human ApoE4 insertions (Bour et al., 2008) have
deleterious effects on water maze performance. Importantly, the study by Bour et al. (2008) as
well as an earlier study by the same group (Grootendorst et al., 2005) showed that there was
some gender specificity to the effects of ApoE4 insertion on learning and memory with female
mice showing poor water maze performance and retention whereas males where no worse than
wild-type controls. Interestingly, there is one study that shows spatial maze learning – at least
in the radial arm maze – is dependent on the age and background strain of the ApoE deficient
mice (Lominska et al., 2001). Specifically, it wasn’t until six months of age that ApoE deficient
mice on a C57Bl/6 background failed to show learning. One of the most recent ApoE
experiments involved delivery of ApoE peptides directly into the hippocampus of rats rather
than manipulation of gene expression in mice (Eddins et al., 2009). Eddins and colleagues
found that infusion of segments of the ApoE protein into the ventral hippocampus produced
impairment in the radial arm maze that persisted for several weeks after the infusion.

As in the case of statins, ApoE appears to be involved in a number of functions other than its
direct effects on cholesterol. As mentioned above, ApoE has been implicated strongly in beta
amyloid deposition and clearance with ApoE4 being less effective in clearing beta amyloid
than ApoE2 or ApoE3 (Martins et al., 2009). Double transgenic mice that express both human
beta amyloid and ApoE have provided evidence of the isoform-dependent effects of ApoE on
beta amyloid accumulation (Bales, 2010). In a recent review, Kim et al. (2009) describe
additional roles for ApoE including involvement in neurotoxicity, tau phosphorylation,
neuroinflammation, cerebrovascular function and brain metabolism. The role of ApoE in
learning and memory is further complicated because it is regulated by the ABCA1 and because
it plays a role as a ligand for the low density lipoprotein receptor.

ATP Binding Cassette Transporters
Although 13 of 48 ATP binding cassette transporters are active in the CNS, only ABCA1 and
ABCG1 have been examined for their role in learning and memory. The cholesterol transporter
ABCA1 is a crucial regulator of ApoE and with the genetic loss of ABCA1 there is a significant
increase in beta amyloid in the CNS (Kim et al., 2008).

Human studies
Reynolds and co-workers have conducted targeted genetic association analyses of ABCA1 and
Alzheimer’s disease and found there to be a highly significant relationship between the two,
implicating ABCA1 in dementia (Reynolds et al., 2009). Akram and colleagues recently found
that there was a significant positive correlation between ABCA1 mRNA expression and
dementia severity and that this differential expression was also reflected at the protein level
(Akram et al., 2010).

Schreurs Page 10

Neurosci Biobehav Rev. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The ATP binding cassette transporter ABCG1 is also important for cholesterol transport but
there is considerable debate about whether or not it has a role in beta amyloid production with
some suggesting it may even have a protective function (Kim et al., 2008). However, there is
at least one study showing that ABCG1 is associated with Alzheimer’s disease (Wollmer et
al., 2007).

Animal studies
In the only ABCA1 animal study to date, Lefterov et al. (2009) reported that the memory
deficits shown by an Alzheimer’s disease transgenic mouse model (aged APP transgenic mice)
in water maze acquisition and retention were exacerbated by a deficiency in ABCA1.
Importantly, they found that mice deficient in ABCA1 without the APP mutation performed
as well as wild-type controls (Lefterov et al., 2009).

There are two studies of learning and memory in transgenic mice over-expressing ABCG1
from different groups and both failed to find any effects of ABCG1 on water maze acquisition
or retention (Burgess et al., 2008; Parkinson et al., 2009). Perhaps like ABCA1, ABCG1 may
only have an effect when learning and memory are already compromised as in the human
studies of dementia and the Lefterov et al. (2009) study of APP transgenic mice.

Low-Density Lipoprotein Receptors
The LDLR family is comprised of at least nine members, two of which – the low-density
lipoprotein receptor and low-density lipoprotein receptor-related protein (LRP) – have been
examined for a role in Alzheimer’s disease (Deane et al., 2009) and in mouse learning and
memory (Qiu et al., 2006).

Human studies
There have been a number of studies of the association between members of the LDLR family
and Alzheimer’s disease in humans and they have yielded conflicting results. Despite a number
of studies finding no association between the LDLR gene polymorphism rs5925 and
Alzheimer’s disease (Bertram et al., 2007; Rodriguez et al., 2006), one study has found that a
different polymorphism (rs688) may be related to Alzheimer’s disease – at least in men (Zou
et al., 2008). With the exception of one study where there was a genetic association between
LRP and Alzheimer’s disease in a sample of Chinese patients (Zhou et al., 2008), other studies
have found no significant association between LRP polymorphisms and Alzheimer’s disease
(Bahia et al., 2008; Sagare et al., 2007) or learning and memory during aging in non-demented
subjects (Reynolds et al., 2006). However, LRP has been shown to transport beta amyloid from
the brain across the BBB and is lower in the serum of Alzheimer’s patients than controls
(Sagare et al., 2007).

Animal studies
Studies of the effects of the LDLR family on murine learning and memory can be divided into
those that employ genetic deletion of LDLR (Cao et al., 2006; Mulder et al., 2004;
Thirumangalakudi et al., 2008) and, because deletion of LRP is a lethal mutation, those that
manipulate LRP either by over-expression (Zerbinatti et al., 2004), administration of an
antagonist (Harris-White et al., 2004), or reduced expression using antisense (Jaeger et al.,
2010).

Cao and colleagues showed that cross-breeding LDLR-deficient mice with Tg2576 mice
produced animals that at 10 months of age were hypercholesterolemic, had increased cerebral
beta amyloid deposits and were impaired in water maze learning and retention compared to
Tg2576 mice in which LDLRs were intact. Importantly, single transgenic mice deficient in
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LDLRs also became hypercholesterolemic but showed no deficits in water maze performance
compared to control mice not deficient in LDLRs (Cao et al., 2006). These latter results are in
contrast to an earlier study by Mulder et al. (2004) who found that compared to mice with
LDLRs, LDLR-deficient mice had impaired memory for the location of a hidden platform in
the water maze task. Differences between these two studies have been attributed to gender and
background strain differences (Cao et al., 2006). However, it should be noted that, like any
genetic manipulation, there is the potential for unwanted side effects. In this case, LDLR-
deficient mice suffer from higher blood pressure and heart rate than controls (Mulder et al.,
2004). Thirumangalakudi et al. (2008) also found memory impairment in LDLR-deficient mice
compared to controls but in this case it was in retention of the radial-arm version of the water
maze. In this task, hidden platforms are placed at the end of four of eight maze arms and the
animal must locate a platform by swimming down the arms of the maze. Once a platform is
found, it is removed and the animal must find another of the remaining platforms. Memory is
assessed later in terms of the number of entries into arms that previously contained a platform
(correct) and those that never contained a platform (error). The background strain for this latter
study was the same as that in the Cao et al. (2006) study (C57BL/6) but the gender was not
specified.

In a study of LRP, Zerbinatti et al. (2004) reported that over-expression of the LRP receptor
in mice also over-expressing the amyloid precursor protein induced an increase in soluble beta
amyloid as a function of age and resulted in poorer acquisition of the water maze task in both
young and old mice. In a second LRP study, Harris-White and colleagues showed that receptor-
associated protein (RAP), an LRP antagonist, attenuated the cellular targeting of beta amyloid
induced by transforming growth factor and prevented deficits in water maze memory retention
(Harris-White et al., 2004). Interestingly, as in a number of other cases where administration
of a treatment to controls has no effect, administration of the RAP by itself did not significantly
alter water maze memory scores compared to saline controls. In a third study, Sagare and
colleagues chronically treated APP transgenic mice with LRP-IV – a major binding domain of
LRP that binds beta amyloid with high affinity – and found treated mice performed better in a
novel object recognition task than vehicle-treated APP mice (Sagare et al., 2007). Finally,
Jaeger et al. (2009) used LRP mRNA antisense infusion into the brain to decrease the level of
LRP and found impaired active avoidance and object recognition compared to animals infused
with scrambled antisense. Unlike the Zerbianatti, Harris-White, and Sagare studies, the study
by Jaeger and colleagues did not manipulate beta amyloid but did find it was increased in the
brain and decreased crossing the BBB out of the CNS.

Liver × Receptors
LXRs are key transcription regulators of carbohydrate and lipid metabolism and are abundant
throughout the body and brain. LXRs act as cholesterol and cholesterol metabolite sensors and
regulate the expression of ABCA1 as well as ABCG1 and induce ApoE secretion. The
importance of LXRs as system sterol sensors has led to the identification and testing of LXR
agonists in a number of rodent models (Baranowski, 2008).

Human studies
There are no human studies of the effects of LXR on learning and memory.

Animal studies
Three different transgenic mouse studies have reported improvements in learning and memory
following use of the LXR agonists TO901317 (Riddell et al., 2007; Vanmierlo et al., 2009)
and GW3965 (Jiang et al., 2008). Riddell et al. (2007) showed that seven days of orally
administered, brain penetrant TO0901317 lowered the level of beta amyloid in the
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hippocampus and improved memory of contextual fear conditioning in young APP transgenic
mice (Tg2576) compared to wild-type controls. Similarly, Jiang et al. (2008) showed that six
days of orally administered GW3965 to aged Tg2576 mice lowered the level of beta amyloid
in the hippocampus and improved memory of contextual fear conditioning. The drug did not
affect wild-type controls. Vanmierlo et al. (2009) found that extended administration of
TO0901317 in the food of aged double transgenic APP-Presenilin (APP/PS) mice for six to
nine weeks did not change beta amyloid plaque levels but did restore impaired object
recognition memory. Object recognition involves exposing mice to two novel objects that can
be explored and then, after a delay, presenting one of the now familiar objects with another
novel object and allowing the mice to explore the two objects again. Mice that remember the
familiar object will spend more time exploring the novel object. These improvements in
learning and memory occurred against a backdrop of increased brain cholesterol precursor and
decreased cholesterol metabolite levels (Vanmierlo et al., 2009) and elevated brain ApoE and
ABCA1 levels (Jiang et al., 2008; Riddell et al., 2007). Clearly, LXR agonists have multiple
CNS effects on key components of the cholesterol metabolic pathway. What remains to be
determined is the causal connection between this multiplicity of effects and learning and
memory. This is particularly important because as noted above, manipulation of ApoE or
ABCA1 in wild-type controls has no effect on learning and memory.

Cholesterol Metabolites
Cholesterol is not degraded within the brain and cannot cross the BBB. However, cholesterol
must be excreted and this is accomplished when cholesterol is converted into the brain-specific
cholesterol metabolite 24S-hydroxcholesterol by the enzyme 24S-hydroxlase (Bjorkhem,
2002). In the periphery, systemic cholesterol is metabolized within the body to one of a number
of products including the metabolite 27-hydroxycholesterol which can cross the BBB and enter
the CNS (Heverin et al., 2005). The role of cholesterol metabolites in learning and memory in
humans have been explored by measuring levels of 24S- and 27-hydoxycholesterol in serum
and the cerebrospinal fluid (Kolsch et al., 2004; Papassotiropoulos et al., 2002; van den
Kommer et al., 2009) and by identifying genetic polymorphisms related to cognitive
impairment and Alzheimer’s disease (Fernandez del Pozo et al., 2006; Fu et al., 2009;
Papassotiropoulos et al., 2005). Animal studies of the effects of cholesterol metabolites on
learning and memory have included knockout mice lacking 24-hydroxylase (Kotti et al.,
2006), infusion of 24-hydroxycholesterol into the brain (Zhao et al., 2009) and manipulation
of the CYP46A1 gene that encodes the enzyme cholesterol 24-hydroxylase (Hudry et al.,
2009).

Human studies
Lutjohann and colleagues have reported a series of studies in which they measured the
cholesterol metabolites 24S- and 27-hydroxycholesterol in demented patients and controls. In
one study they found that levels of 24S-hydroxycholesterol in the cerebrospinal fluid of
Alzheimer’s patients and those with mild cognitive impairment were higher than in subjects
without cognitive impairment (Papassotiropoulos et al., 2002). In a second study, Heverin et
al. (2005) found increased post mortem levels of 27-hydroxcholesterol in the brains
Alzheimer’s patients compared to controls. In a third study, cholesterol-corrected levels of both
24S- and 27-hydroxycholesterol were significantly reduced in the plasma of demented versus
non-demented subjects and depressed patients (Kolsch et al., 2004). This relationship did not
hold in a longitudinal study of cognitive decline in normal subjects between the ages of 55 and
85 where only the ratio between cholesterol and 27-hydroxycholesterol in carriers of the ApoE4
allele was a predictor of worsening cognitive function (van den Kommer et al., 2009). The
variability in these data may be attributable, in part, to the very small quantities of these
metabolites and the difficulty in measuring them. It is also interesting that what appear to be
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consistent findings in vitro have been less consistent in vivo suggesting that there are complex
interactions among and between many of the steps in the synthesis and metabolism of
cholesterol in the CNS (Bjorkhem, 2009; Russell et al., 2009).

A number of genetic association studies have found polymorphisms of the 24S-hydroxylase
gene CYP46A1 in patients with mild cognitive impairment and Alzheimer’s disease.
Papassotiropoulos et al. (2005) reported that a cluster of cholesterol-related genes including a
single nucleotide polymorphism of CYP46A1 (rs754203) contributed to the risk for
Alzheimer’s disease. Fernandez del Pozo and her colleagues examined the effect of the
polymorphic site rs754203 on mild cognitive impairment and Alzheimer’s disease in patients
with the ApoE3 or ApoE4 allele (Fernandez del Pozo et al., 2006). They found that the
polymorphism increased the risk of Alzheimer’s disease in those with the ApoE3 form but not
in those with the ApoE4 form. A number of polymorphisms of the CYP46A1 gene including
rs754203 were examined in older Chinese subjects who were stratified into cognitively intact,
mild, moderate, and severely demented using the Chinese versions of the MMSE and ADAS-
cog (Fu et al., 2009). Fu et al. found at a 2-year follow up that subjects who deteriorated to
dementia were more likely to carry the polymorphic site rs754203 or rs3742376 of the 24-
hydroxylase gene than those that did not.

Animal studies
Kotti and her colleagues found that transgenic mice lacking 24-hydroxylase failed to learning
the water maze task compared to wild-type controls (Kotti et al., 2006). These mice were also
significantly worse than wild-type controls in both cued and contextual fear conditioning.
Importantly, the 24-hydroxlase-deficient mice not only failed to synthesize or accumulate 24S-
hydroxycholesterol, they show a 50% decrease in cholesterol synthesis in the brain. Zhao and
co-workers showed that ten days after three infusions of 24S-hydroxycholesterol into the rat
lateral ventricle, animals trained and tested in the water maze were found to have longer escape
latencies, travel further and spend less time in the target quadrant than saline-injected and sham
controls (Zhao et al., 2009). Importantly, the 24S-hydroxycholesterol infusions were found to
be neurotoxic because they resulted in hippocampal lesions and significant numbers of
apoptotic cells (Zhao et al., 2009). These neurotoxic effects were avoided by Hudry and her
coworkers by using an adeno-associated virus encoding human CYP46A1 to increase 24S-
hydroxycholesterol content in the cortex and hippocampus of APP/PS transgenic mice (Hudry
et al., 2009). These investigators found that over-expression of CYP46A1 improved the
cognitive deficits in APP/PS mice both in terms of the acquisition and retention of the water
maze compared to APP/PS mice injected with a mutated version of the adeno-associated virus
that did not over-express CYP46A1. They also found that mice over-expressing CYP46A1 had
reduced levels of beta amyloid production and amyloid deposits compared to APP/PS control
mice.

The differences between the various cholesterol metabolite studies that have been conducted
in human and animal learning and memory attest to the complications that can arise when
manipulating a complex metabolic pathway. For example, the 24-hydoxylase knock out study
by Kotti et al. (2006) altered not only 24S-hydroxycholseterol but cholesterol synthesis itself.
The reduction in cholesterol synthesis was compensated for by a decrease in HMG-CoA
reductase activity as a result of negative feedback by cholesterol and, as a result, overall CNS
cholesterol levels were unchanged (Kotti et al., 2006). Thus, 24S-hydroxycholesterol is not
only a metabolite of cholesterol, it is also a involved in cholesterol synthesis because it regulates
gene expression that maintains cholesterol homeostasis. Specifically, 24S-hydroxycholesterol
can up-regulate ApoE via LXR (as well as ABCA1 and ABCG1) and increase ApoE-mediated
cholesterol efflux from cells (Martins et al., 2009).
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Conclusion
There is a large body of data showing that cholesterol is involved in learning and memory but
the nature of that involvement appears to be as complex as the synthesis, metabolism and
homeostasis of cholesterol itself. In some cases, there have been opposite behavioral results
from the same transgenic manipulation only to find that the discrepancies may be attributable
to strain or gender differences. We have examined data showing that dietary cholesterol can
influence a diverse number of learning tasks from water maze to eyelid and fear conditioning
even though cholesterol added to the diet does not cross the BBB. Manipulations of cholesterol
within the CNS that circumvent the BBB through genetic, pharmacological, or metabolic
measures have also produced a range of results but often in animals that have already been
otherwise compromised. The same manipulations in normal controls have sometimes been
found to be ineffective. The human cholesterol literature is no less complex. Reductions in
cholesterol levels using statins having been found to be effective in improving learning and
memory in some cases but not in others. Similarly, there is a great deal of controversy over
whether statins can help alleviate the problems with learning and memory found in Alzheimer’s
disease. Correlations of cholesterol levels with cognitive function have been found to be
positive, negative, or to have no relationship at all. Association studies of cholesterol and
cognition have found some genetic polymorphisms to be related to cognitive functions whereas
others have not.

What is clear from all of these experiments is that cholesterol is critical to learning and memory
and disturbances in cholesterol levels, synthesis or metabolism have significant consequences.
These disturbances appear to have a range of direct and indirect effects. Although dietary
cholesterol does not cross the BBB we have seen that there are a range of consequences of
increasing cholesterol including significant peripheral pathology that may signal the brain
along a number of different pathways including cholesterol metabolites, pro-inflammatory
mediators and antioxidant processes. In cases where attempts have been made to model the
complexity of these myriad effects, results have been difficult to interpret. Although a powerful
tool in understanding the role of cholesterol, transgenic mouse models have significant short
comings in terms of unlooked for side-effects and strain and gender issues. Finally, it seems
clear that understanding the effects of cholesterol on learning and memory, although
challenging, is too important to ignore.
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Table 1

Effects of Cholesterol Manipulations in Humans

Variable Measure Change References

Serum cholesterol level Intelligence Correlation (Atzmon et al., 2002; Muldoon et al., 1997; Reitan and Shipley,
1963; van Exel et al., 2002; Yaffe et al., 2002)

Elevated serum cholesterol Cognitive function Correlation (Elias et al., 2005; Panza et al., 2006)

Dementia Increase (Solomon et al., 2009b; Whitmer et al., 2005)

Alzheimer’s disease Increase (Canevari and Clark, 2007; Evans et al., 2000;
Hartmann, 2001; Jarvik et al., 1995; Ledesma and Dotti,
2006; Lesser et al., 2009; Notkola et al., 1998;
Simons et al., 2001; Sjogren et al., 2006; Stewart et al., 2001)

Cognitive decline Decrease (Mielke et al., 2005; Panza et al., 2006; van den Kommer et
al., 2009; West et al., 2008)

Decreased serum cholesterol
(Statin therapy)

Alzheimer’s disease No change (Arvanitakis et al., 2008; Carlsson et al., 2009;
Feldman et al., 2010)

Decrease (Masse et al., 2005; Sparks et al., 2008)

Dementia Decrease (Jick et al., 2000)

Cognition Increase (Carlsson et al., 2008; Solomon et al., 2009a)

Decrease (Evans and Golomb, 2009)

No change (Muldoon et al., 2000)

Apolipoprotein E (ApoE4) Alzheimer’s disease Increase (Brouwers et al., 2008; Chen et al., 2002; Deary et al., 2002;
Mayeux et al., 2001; Poirier, 2005; Sparks, 1997)

Cognition Decrease (Deary et al., 2002; Dik et al., 2001; Flory et al., 2000;
Juva et al., 2000; Liu et al., 2008; Mayeux et al., 2001;
Wilson et al., 2002)

No change (Kim et al., 2002; Salo et al., 2002; Small et al., 2000)

Apolipoprotein E (ApoE3) Increase (Martins et al., 2009)

ATP Binding cassette –
ABCA1

Alzheimer’s disease Correlation (Akram et al., 2010; Reynolds et al., 2009)

– ABCG1 Alzheimer’s disease Correlation (Wollmer et al., 2007)

Low-density Lipoprotein
Receptors
(Gene polymorphism)

Alzheimer’sdisease No association (Bahia et al., 2008; Bertram et al., 2007; Rodriguez et al.,
2006; Sagare et al., 2007)

Alzheimer’s disease Association (Zhou et al., 2008)

Cognition No association (Reynolds et al., 2006)

Cholesterol metabolites
(24S-hydroxycholesterol)

Alzheimer’s disease Increase (in brain) (Papassotiropoulos et al., 2002)

Dementia Decrease (in plasma) (Kolsch et al., 2004)

(27-hydroxycholesterol) Alzheimer’s disease Increase (in brain) (Heverin et al., 2005)

Cholesterol metabolites
(Gene polymorphism)

Alzheimer’s disease Association (Fernandez del Pozo et al., 2006; Papassotiropoulos et al.,
2005)

Dementia Association (Fu et al., 2009)
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Table 2

Effects of Cholesterol Manipulations in Animals

Variable Measure Change References

Elevated serum cholesterol Water maze learning Increase (Dufour et al., 2006; Micale et al., 2008; Miller and Wehner,
1994; Upchurch and Wehner, 1988)

Decrease (Granholm et al., 2008; Thirumangalakudi et al., 2008)

Eyeblink conditioning
acquisition

Increase (Schreurs et al., 2003; Schreurs et al., 2007a;
Schreurs et al., 2007b)

Eyeblink conditioning
memory

Decrease (Darwish et al., 2010)

Elevated cholesterol + copper Decrease (Sparks and Schreurs, 2003; Woodruff-Pak et al., 2007)

Decreased serum cholesterol Water maze learning Increase (Kane and Robinson, 1999; Kessler et al., 1986;
Quartermain et al., 2001; Yehuda et al., 1998; Yehuda and
Carasso, 1993)

Eyeblink conditioning Increase (Endo et al., 1996; O’Brien et al., 2002; Voikar et al., 2002; Xu
et al., 1998)

Passive avoidance Increase (Quartermain et al., 2001)

Statin treatment Water maze learning and
zmemory

Increase (Li et al., 2006; Lu et al., 2007)

No change (Koladiya et al., 2008)

Apolipoprotein E (ApoE4) Water maze Decrease (Bour et al., 2008; Grootendorst et al., 2005;
Veinbergs et al., 2000)

Water maze No change (Hartman et al., 2001)

Radial arm maze Decrease (Eddins et al., 2009; Hartman et al., 2001; Lominska et al.,
2001)

ATP Binding cassette – ABCA1 Water maze No change (Lefterov et al., 2009)

– ABCG1 Water maze No change (Burgess et al., 2008; Parkinson et al., 2009)

Low-density Lipoprotein Receptors Water maze Decrease (Mulder et al., 2004)

No change (Cao et al., 2006)

Water radial arm maze Decrease (Thirumangalakudi et al., 2008)

Active avoidance Decrease (Jaeger et al., 2010)

LRP + amyloid precursor protein Water maze Decrease (Harris-White et al., 2004; Zerbinatti et al., 2004)

Liver × receptor agonist Fear conditioning Increase (Jiang et al., 2008; Riddell et al., 2007)

Object recognition Increase (Vanmierlo et al., 2009)

Cholesterol metabolites
(24S-hydroxycholesterol)

Water maze Decrease (Hudry et al., 2009; Kotti et al., 2006; Zhao et al., 2009)
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